Fourier Transform Theory

Fourier Transform:

$$\hat{f}(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx}dx, \quad f(x) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \hat{f}(k)e^{ikx}dk$$

Key Properties:

- Linearity: $\mathcal{F}{af+bg} = a\hat{f}+b\hat{g}$
- Time Shift: $\mathcal{F}{f(x-a)} = e^{-ika}\hat{f}(k)$
- Frequency Shift: $\mathcal{F}\{e^{iax}f(x)\} = \hat{f}(k-a)$
- Scaling: $\mathcal{F}{f(ax)} = \frac{1}{|a|}\hat{f}(k/a)$
- Derivatives: $\mathcal{F}{f^{(n)}(x)} = (ik)^n \hat{f}(k)$
- Multiplication by x^n : $\mathcal{F}\{x^n f(x)\} = i^n \hat{f}^{(n)}(k)$ Convolution Theorem:

$$(f\ast g)(x)=\int f(x-y)g(y)dy,\quad \mathcal{F}\{f\ast g\}=\hat{f}(k)\hat{g}(k)$$

Parseval Identity:

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{f}(k)|^2 dk$$

Delta Function Identities:

$$\mathcal{F}{1} = 2\pi\delta(k), \quad \mathcal{F}{\delta(x-a)} = e^{-ika}$$

Poisson Summation Formula:

$$\sum_{n\in\mathbb{Z}}f(n)=\sum_{k\in\mathbb{Z}}\widehat{f}(2\pi k)$$

Standard Transform Pairs:

$$\mathcal{F}\{e^{-ax^2}\} = \sqrt{\frac{\pi}{a}}e^{-k^2/4a}$$
$$\mathcal{F}\{\operatorname{rect}(x)\} = \operatorname{sinc}(k/2)$$
$$\mathcal{F}\{\operatorname{sinc}(x)\} = \operatorname{rect}(k/2\pi)$$
$$\mathcal{F}\{H(x)\} = \pi\delta(k) + \frac{1}{ik} \quad \text{(principal value)}$$
$$\mathcal{F}\{e^{-|x|}\} = \frac{2}{1+k^2}$$

Example: Heat Equation via Fourier Transform

$$u_t = Du_{xx}, \quad u(x,0) = f(x)$$

Take FT in x: $\hat{u}_t = -Dk^2\hat{u}$

$$\Rightarrow \hat{u}(k,t) = \hat{f}(k)e^{-Dk^2t} \Rightarrow u(x,t) = \frac{1}{2\pi}\int \hat{f}(k)e^{-Dk^2t}e^{ikx}dk$$

Or via convolution:

$$u(x,t) = \int f(\xi) \frac{1}{\sqrt{4\pi Dt}} e^{-\frac{(x-\xi)^2}{4Dt}} d\xi$$

PDE Examples and Techniques

Poisson's Equation in \mathbb{R}^2 and \mathbb{R}^3 Equation: $\nabla^2 u = -f(x)$ on \mathbb{R}^n • In \mathbb{R}^2 , Green's function:

$$G(x,\xi) = -\frac{1}{2\pi} \log |x - \xi|$$
$$u(x) = \int_{\mathbb{R}^2} -\frac{1}{2\pi} \log |x - \xi| f(\xi) d^2 \xi$$

• In \mathbb{R}^3 , Green's function:

$$\begin{split} G(x,\xi) &= \frac{1}{4\pi |x-\xi|} \\ u(x) &= \int_{\mathbb{R}^3} \frac{1}{4\pi |x-\xi|} f(\xi) \, d^3\xi \end{split}$$

Separation of Variables: Heat Equation Problem:

$u_t = \alpha^2 u_{xx}, \quad x \in [0, L], \quad u(0, t) = u(L, t) = 0, \quad u(x, 0) = f(x)$ Ansatz: u(x, t) = X(x)T(t)

$$\frac{T'}{\alpha^2 T} = \frac{X''}{X} = -\lambda \Rightarrow X_n = \sin\left(\frac{n\pi x}{L}\right), \quad T_n = e^{-\alpha^2 \left(\frac{n\pi}{L}\right)^2 t}$$

General solution:

$$u(x,t) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{L}\right) e^{-\alpha^2 \left(\frac{n\pi}{L}\right)^2 t}$$
$$A_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Fourier Transform Method for PDEs

Example: Solve $u_t = Du_{xx}, u(x, 0) = f(x)$ on \mathbb{R}

- Take FT in x: $\hat{u}_t = -Dk^2\hat{u}$
- Solve ODE: $\hat{u}(k,t) = \hat{f}(k)e^{-Dk^2t}$
- Inverse FT:

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{-Dk^2 t} e^{ikx} dk$$

• If $\hat{f}(k)$ known (e.g. Gaussian), result is explicit.

Green's Functions

ODE Case: Constructing $G(x,\xi)$

For a linear second-order ODE:

$$L[y] = \frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) + q(x)y = f(x)$$

We want: $y(x) = \int G(x,\xi)f(\xi)d\xi$ Step-by-step:

- 1. Solve the homogeneous equation Ly = 0 to find $y_1(x)$ and $y_2(x)$
- 2. Compute Wronskian: $W = y_1 y'_2 y'_1 y_2$

3. Construct:

$$G(x,\xi) = \begin{cases} \frac{y_1(x)y_2(\xi)}{p(\xi)W(\xi)}, & x < \xi\\ \\ \frac{y_1(\xi)y_2(x)}{p(\xi)W(\xi)}, & x > \xi \end{cases}$$

Properties:

- $G(x,\xi)$ is continuous in x at $x = \xi$
- Discontinuity in $\partial_x G$ at $x = \xi$ satisfies:

$$\left.\frac{\partial G}{\partial x}\right|_{x=\xi^+} - \left.\frac{\partial G}{\partial x}\right|_{x=\xi^-} = \frac{1}{p(\xi)}$$

PDE Case: Whole Space

Poisson Equation: $\nabla^2 u = -f$ in \mathbb{R}^n

• In \mathbb{R}^2 :

$$G(x,\xi) = -\frac{1}{2\pi} \log |x-\xi|$$

• In \mathbb{R}^3 :

$$G(x,\xi) = \frac{1}{4\pi|x-\xi|}$$

Then:

$$u(x) = \int_{\mathbb{R}^n} G(x,\xi) f(\xi) d\xi$$

Green's Function in Bounded Domains

$$Lu = f \text{ in } \Omega, \quad u|_{\partial\Omega} = 0 \Rightarrow u(x) = \int_{\Omega} G(x,\xi) f(\xi) d\xi$$

If nonhomogeneous BCs, boundary terms arise:

$$u(x) = \int_{\Omega} Gf + \int_{\partial \Omega} \left[G \frac{\partial u}{\partial n} - u \frac{\partial G}{\partial n} \right] dS$$

Green's Identities

Identity I (Integration by parts):

$$\int_{\Omega} \left(u \nabla^2 v + \nabla u \cdot \nabla v \right) d\Omega = \int_{\partial \Omega} u \frac{\partial v}{\partial n} dS$$

Identity II (Symmetric form):

$$\int_{\Omega} (u\nabla^2 v - v\nabla^2 u) d\Omega = \int_{\partial\Omega} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) dS$$

Jump and Symmetry Conditions

For $LG = \delta(x - \xi)$:

- $G(x,\xi)$ is symmetric: $G(x,\xi) = G(\xi,x)$
- $G(x,\xi)$ is continuous at $x = \xi$
- Derivative jump:

$$\left. \frac{\partial G}{\partial n_x} \right|_{x=\xi^+} - \left. \frac{\partial G}{\partial n_x} \right|_{x=\xi^-} = -1$$

Sturm–Liouville Theory

General Form

A Sturm–Liouville problem is:

$$\frac{d}{dx}\left(p(x)\frac{dy}{dx}\right) + \left[\lambda w(x) - q(x)\right]y = 0 \quad \text{on } [a,b]$$

with suitable boundary conditions, often:

$$\alpha_1 y(a) + \alpha_2 y'(a) = 0, \quad \beta_1 y(b) + \beta_2 y'(b) = 0$$

Self-Adjointness

The Sturm–Liouville operator is self-adjoint with respect to the inner product:

$$\langle f,g\rangle = \int_a^b f(x)g(x)w(x)dx$$

This implies:

- Real eigenvalues: $\lambda \in \mathbb{R}$
- Orthogonal eigenfunctions: $\langle y_m, y_n \rangle = 0$ if $m \neq n$
- Completeness: eigenfunctions form a basis for suitable function space

Integration Factor Trick

To write a second-order ODE in self-adjoint form: Given:

ven:

$$y'' + r(x)y' + s(x)y = 0$$

Multiply by $\mu(x)$ such that:

$$\mu(x)y'' + \mu(x)r(x)y' = \frac{d}{dx}\left(\mu(x)y'\right) \Rightarrow \mu(x) = e^{\int r(x)dx}$$

This gives self-adjoint form:

$$\frac{d}{dx}\left(\mu(x)y'\right) + \mu(x)s(x)y = 0$$

Eigenfunction Expansion

If $\{y_n\}$ is the set of eigenfunctions:

$$f(x) = \sum_{n=1}^{\infty} a_n y_n(x), \quad a_n = \frac{\int_a^b f(x) y_n(x) w(x) dx}{\int_a^b y_n^2(x) w(x) dx}$$

Example: Classic Dirichlet Problem

$$y'' + \lambda y = 0$$
, $y(0) = y(L) = 0 \Rightarrow y_n(x) = \sin\left(\frac{n\pi x}{L}\right)$, $\lambda_n = \left(\frac{n\pi}{L}\right)^2$

These form an orthogonal basis on [0, L] with weight w(x) = 1:

$$\int_0^L \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = 0 \quad \text{for } n \neq m$$

Method of Characteristics

Purpose

Used to solve first-order PDEs of the form:

 $a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u)$

Idea: Along special curves called *characteristics*, the PDE becomes an ODE.

Characteristic System

Let x(s), y(s), u(s) describe the characteristic curve. Then:

$$\frac{dx}{ds} = a(x, y, u), \quad \frac{dy}{ds} = b(x, y, u), \quad \frac{du}{ds} = c(x, y, u)$$

Solve these ODEs with appropriate initial conditions.

Linear Case

If a, b, c are independent of u:

$$a(x,y)u_x + b(x,y)u_y = c(x,y) \Rightarrow \text{Solve } \frac{dx}{a} = \frac{dy}{b} = \frac{du}{c}$$

Quasilinear Case

If a, b, c depend on u, characteristic curves must be found together with u:

$$\frac{dx}{ds} = a(u), \quad \frac{dy}{ds} = b(u), \quad \frac{du}{ds} = c(u),$$

Initial condition: u(x,0) = f(x) gives a curve in (x, y, u) space to start integrating from.

Well-Posedness Condition

Let initial curve be $\gamma(s) = (x(s), y(s))$. The problem is well-posed if:

$$(a,b) \cdot (\gamma'(s)) \neq 0$$

That is, the characteristic direction is not tangent to the initial curve.

Shock Formation (Quasilinear Case)

In $u_t + uu_x = 0$, characteristics:

$$\frac{dx}{dt} = u, \quad \frac{du}{dt} = 0 \Rightarrow u = f(x_0) \Rightarrow x = x_0 + f(x_0)t$$

Characteristics intersect (shock forms) when:

$$\frac{dx}{dx_0} = 1 + f'(x_0)t = 0 \Rightarrow t_s = -\frac{1}{f'(x_0)} \quad \text{if } f'(x_0) < 0$$

Example: Linear Transport

Solve:

$$u_t + 2u_x = 0, \quad u(x,0) = \phi(x)$$

Characteristic ODEs:

$$\frac{dx}{dt} = 2 \Rightarrow x = 2t + x_0, \quad u = \phi(x_0) \Rightarrow u(x, t) = \phi(x - 2t)$$

Bessel Functions and Fourier–Bessel Series

Origin: Laplace in Polar Coordinates

Consider Laplace's equation in 2D polar coordinates:

$$\nabla^2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

Try separation of variables: $u(r, \theta) = R(r)\Theta(\theta)$. Substitute and divide:

$$\frac{r^2 R'' + r R'}{R} + \frac{\Theta''}{\Theta} = 0 \Rightarrow \text{Each term} = -n^2$$

Angular part:

$$\Theta(\theta) = A\cos(n\theta) + B\sin(n\theta)$$

Radial part gives Bessel's equation:

$$r^{2}R'' + rR' + (r^{2} - n^{2})R = 0 \Rightarrow R(r) = J_{n}(r), Y_{n}(r)$$

Bessel's Differential Equation

$$x^{2}y'' + xy' + (x^{2} - n^{2})y = 0$$

Solutions:

•
$$J_n(x)$$
 — Bessel function of the first kind (finite at $x = 0$)

• $Y_n(x)$ — Bessel function of the second kind (singular at x = 0)

Zeros and Boundary Conditions

The zeros $\alpha_{n,m}$ of $J_n(x)$ are used in boundary conditions like $u(R, \theta) = 0$.

Orthogonality of J_n

$$\int_0^R r J_n\left(\frac{\alpha_{n,m}r}{R}\right) J_n\left(\frac{\alpha_{n,k}r}{R}\right) dr = 0 \quad \text{for } m \neq k$$

Fourier-Bessel Series

If f(r) is defined on [0, R], expand:

$$f(r) = \sum_{m=1}^{\infty} A_m J_n\left(\frac{\alpha_{n,m}r}{R}\right)$$

$$A_m = \frac{\int_0^R rf(r)J_n\left(\frac{\alpha_{n,m}r}{R}\right)dr}{\int_0^R r\left[J_n\left(\frac{\alpha_{n,m}r}{R}\right)\right]^2dr}$$

Example: Circular Membrane

Solution:

$$u(r,\theta,t) = \sum_{n,m} A_{n,m} J_n\left(\frac{\alpha_{n,m}r}{R}\right) \left(B_{n,m}\cos(n\theta) + C_{n,m}\sin(n\theta)\right) e^{-\lambda_n}$$

Where:

$$\lambda_{n,m} = \left(\frac{\alpha_{n,m}}{R}\right)^2$$

IB Mathematics 2025 Cheat Sheet

Legendre Polynomials and Spherical Harmonics

Laplace Equation in Spherical Coordinates

$$\nabla^2 u = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \phi^2}$$

Assume $u(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$ and separate variables.

Angular Separation

 $\Phi(\phi) :$

$$\frac{\partial^2 \Phi}{\partial \phi^2} + m^2 \Phi = 0 \Rightarrow \Phi = e^{im\phi}$$

 $\Theta(\theta)$ gives:

$$\frac{1}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) + \left[\ell(\ell+1) - \frac{m^2}{\sin^2\theta} \right] \Theta = 0 \Rightarrow \Theta = P_\ell^m(\cos\theta)$$
 wit

Legendre's Equation

For m = 0, standard Legendre equation:

$$(1 - x^2)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2x\frac{\mathrm{d}y}{\mathrm{d}x} + \ell(\ell+1)y = 0$$

Solutions: $P_{\ell}(x)$ — Legendre polynomials.

Associated Legendre Functions

For general m:

$$P_{\ell}^{m}(x) = (1 - x^{2})^{|m|/2} \frac{\mathrm{d}^{|m|}}{\mathrm{d}x^{|m|}} P_{\ell}(x)$$

Orthogonality Relations

$$\int_{-1}^{1} P_{\ell}(x) P_k(x) dx = 0 \quad \text{if } \ell \neq k$$

$$\int_0^{\pi} \int_0^{2\pi} Y_{\ell}^m(\theta,\phi) \overline{Y_k^n(\theta,\phi)} \sin \theta \, d\phi \, d\theta = \delta_{\ell k} \delta_{mn}$$

Spherical Harmonics

$$Y_{\ell}^{m}(\theta,\phi) = N_{\ell m} P_{\ell}^{m}(\cos\theta) e^{im\phi} \quad \text{with } N_{\ell m} = \sqrt{\frac{(2\ell+1)}{4\pi} \cdot \frac{(\ell-m)!}{(\ell+m)!}} \frac{(\ell-m)!}{(\ell+m)!}$$

Used in solving Laplace and Helmholtz equations in spherical domains.

Application: Expanding $f(\theta, \phi)$

If f is defined on the sphere:

$$f(\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\theta,\phi)$$

$$a_{\ell m} = \int f(\theta, \phi) \overline{Y_{\ell}^{m}}(\theta, \phi) \sin \theta \, d\theta \, d\phi$$

Green's Function via Method of Images

Problem Setup: Exterior of a Sphere

Let $\Omega = \mathbb{R}^3 \backslash B(0, R)$ — the region outside a sphere of radius R.

Goal: Find Green's function $G(\vec{x}, \vec{\xi})$ for Poisson's equation:

$$\nabla^2 G = -\delta(\vec{x} - \vec{\xi}), \quad \vec{x} \in \Omega$$

with boundary condition: G = 0 on $|\vec{x}| = R$. Assume source point $\vec{\xi}$ is outside the sphere, i.e., $|\vec{\xi}| > R$.

Image Method Idea

Place an image charge at:

$$\vec{\xi^*} = \frac{R^2}{|\vec{\xi}|^2} \vec{\xi}$$

with strength:

$$q^* = -\frac{R}{|\vec{\xi}|}$$

Then define:

$$G(\vec{x},\vec{\xi}) = \frac{1}{4\pi |\vec{x} - \vec{\xi}|} - \frac{R}{|\vec{\xi}|} \cdot \frac{1}{4\pi |\vec{x} - \vec{\xi^*}|}$$

Properties of G

• G satisfies
$$\nabla^2 G = -\delta(\vec{x} - \vec{\xi})$$
 in Ω

• G = 0 on $|\vec{x}| = R$

• G is symmetric: $G(\vec{x}, \vec{\xi}) = G(\vec{\xi}, \vec{x})$

Use in Solving Poisson's Equation

Given $\nabla^2 u = -f$ in Ω , with $u|_{\partial\Omega} = 0$, the solution is:

$$u(\vec{x}) = \int_{\Omega} G(\vec{x}, \vec{\xi}) f(\vec{\xi}) \, d^3\xi$$

Euler–Lagrange Equation

Given a functional of the form

$$F[y] = \int_{a}^{b} f(x, y, y') \, dx$$

a necessary condition for y(x) to extremise F is the **Euler–Lagrange equation**:

$$\frac{d}{dx}\left(\frac{\partial f}{\partial y'}\right) - \frac{\partial f}{\partial y} = 0.$$

First Integral: Eliminating y

Special Case

If the integrand f(x, y, y') does **not** depend explicitly on y, then:

$$\frac{\partial f}{\partial y} = 0 \quad \Rightarrow \quad \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0.$$

This implies:

$$\frac{\partial f}{\partial y'} = \text{constant.}$$

First Integral: Eliminating x

Special Case

If the integrand f(x, y, y') does **not** depend explicitly on x, then:

$$\frac{\partial f}{\partial x} = 0$$

Define the quantity:

$$H = f - y' \frac{\partial f}{\partial y'}$$

$$\frac{dH}{dx} = 0 \quad \Rightarrow \quad f - y' \frac{\partial f}{\partial y'} = \text{constant.}$$

Interpretation

This is analogous to conservation of the Hamiltonian in mechanics — a conserved quantity associated with translational symmetry in x.

Example: Brachistochrone Problem

$$f = \frac{\sqrt{1 + (y')^2}}{\sqrt{-y}}$$

This has no explicit x-dependence, so

$$f - y' \frac{\partial f}{\partial y'} = \text{constant} \quad \Rightarrow \quad \frac{1}{\sqrt{1 + (y')^2}} = k\sqrt{-y}$$

Solve for y(x) using a cycloidal parametrisation.

Euler–Lagrange Equation with Constraints

Setup

Suppose we wish to extremise

$$F[y] = \int_{a}^{b} f(x, y, y') \, dx$$

subject to a constraint

$$G[y] = \int_a^b g(x, y, y') \, dx = k.$$

Lagrange Multiplier Method

Define a new functional:

$$\Phi[y;\lambda] = F[y] - \lambda G[y] = \int_a^b (f - \lambda g) \, dx.$$

Then apply the usual Euler–Lagrange procedure to the integrand $f - \lambda g$:

$$\frac{d}{dx}\left(\frac{\partial(f-\lambda g)}{\partial y'}\right) - \frac{\partial(f-\lambda g)}{\partial y} = 0.$$

Example: Dido's Problem

Maximise the area under a curve with a fixed arc length.

Objective:
$$A[y] = \int_{a}^{b} y(x) dx$$
, Constraint: $L[y] = \int_{a}^{b} \sqrt{1 + (y')^2} dx$
Define:

$$h = y - \lambda \sqrt{1 + (y')^2}.$$

Use the first integral form (no x-dependence) on h to find:

$$\frac{d}{dx}\left(\frac{\partial h}{\partial y'}\right) - \frac{\partial h}{\partial y} = 0 \quad \Rightarrow \quad y - \lambda\sqrt{1 + (y')^2} = \text{constant.}$$

Multiple Dependent Variables

Setup

Let $\vec{y}(x) = (y_1(x), y_2(x), \dots, y_n(x))$, and define the functional:

$$F[\vec{y}] = \int_{a}^{b} f(x, y_1, \dots, y_n, y'_1, \dots, y'_n) \, dx.$$

Euler-Lagrange System

The necessary conditions for $\vec{y}(x)$ to extremise F are:

$$\frac{d}{dx}\left(\frac{\partial f}{\partial y'_i}\right) - \frac{\partial f}{\partial y_i} = 0 \quad \text{for all } i = 1, \dots, n.$$

First Integrals

• If $\partial f / \partial y_j = 0$, then:

$$\frac{\partial f}{\partial y'_j} = \text{constant}.$$

• If f has no x-dependence:

$$f - \sum_{i=1}^{n} y'_i \frac{\partial f}{\partial y'_i} = \text{constant}$$

Multiple Independent Variables

Setup

Let $\phi : \mathbb{R}^n \to \mathbb{R}^m$ be a vector-valued function defined on a region $\mathcal{D} \subseteq \mathbb{R}^n$. The functional is:

$$F[\phi] = \int_{\mathcal{D}} f(x_1, \dots, x_n, \phi, \nabla \phi) d^n x.$$

Euler–Lagrange PDE

The generalised Euler–Lagrange equation is:

$$\frac{\partial f}{\partial \phi} - \nabla \cdot \left(\frac{\partial f}{\partial (\nabla \phi)} \right) = 0.$$

In index notation (summation implied):

$$\frac{\partial f}{\partial \phi} - \partial_i \left(\frac{\partial f}{\partial (\partial_i \phi)} \right) = 0$$

Derivation Sketch

- Perturb $\phi \to \phi + \varepsilon \eta$ with η vanishing on $\partial \mathcal{D}$.
- Use divergence theorem to move derivatives off η .
- Apply fundamental lemma \Rightarrow PDE above.

Example: Laplace's Equation

Minimise potential energy:

$$F[\phi] = \int_{\mathcal{D}} \frac{1}{2} (\phi_x^2 + \phi_y^2) \, dx \, dy.$$

Then:

$$\frac{\partial f}{\partial \phi} = 0, \quad \frac{\partial f}{\partial \phi_x} = \phi_x, \quad \frac{\partial f}{\partial \phi_y} = \phi_y,$$
$$\Rightarrow \quad \phi_{xx} + \phi_{yy} = 0.$$

Higher Derivatives

Setup

$$F[y] = \int_{a}^{b} f(x, y, y', y'', \dots, y^{(n)}) \, dx.$$

Euler-Lagrange Equation (General Form)

The generalised form is:

$$\sum_{k=0}^{n} (-1)^{k} \frac{d^{k}}{dx^{k}} \left(\frac{\partial f}{\partial y^{(k)}}\right) = 0$$

Boundary Conditions

The variation $\eta(x)$ must satisfy:

$$\eta^{(k)}(a) = \eta^{(k)}(b) = 0$$
 for $k = 0, 1, \dots, n-1$,

Example: Elastic Beam

Minimise bending energy:

$$F[y] = \int_0^1 (y'')^2 dx, \quad \text{subject to } y(0) = y'(0) = 0, \ y(1) = 0, \ y'(1) = 1$$
$$\frac{\partial f}{\partial y''} = 2y'', \quad \frac{d^2}{dx^2}(2y'') = 0 \quad \Rightarrow \quad y^{(4)} = 0.$$

First Integral for n = 2

Special Case

If the integrand f(x, y', y'') does **not** depend explicitly on y, then:

$$\frac{\partial f}{\partial y} = 0 \quad \Rightarrow \quad \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) - \frac{d^2}{dx^2} \left(\frac{\partial f}{\partial y''} \right) = 0$$
$$\frac{\partial f}{\partial y'} - \frac{d}{dx} \left(\frac{\partial f}{\partial y''} \right) = \text{constant.}$$

Example

Extremise:

$$F[y] = \int_0^1 (y'')^2 dx$$
$$y(0) = y'(0) = 0, \quad y(1) = 0, \quad y'(1) = 1.$$

c1

Since $f = (y'')^2$ and does not depend on y or y', we get:

$$\frac{d^2}{dx^2}(2y'') = 0 \quad \Rightarrow \quad y^{(4)} = 0.$$
$$y(x) = x^3 - x^2.$$

Principle of Least Action

Setup

In classical mechanics, the trajectory of a particle is found by extremising the **action functional**:

$$S[x] = \int_{t_1}^{t_2} L(x(t), \dot{x}(t), t) \, dt,$$

where L = T - V is the Lagrangian: kinetic energy minus potential energy.

Euler–Lagrange Equation

The action S[x] is extremised when:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}_i}\right) - \frac{\partial L}{\partial x_i} = 0.$$

This is the Euler–Lagrange equation in time-dependent form, yielding the equations of motion.

Example: Newton's Second Law

Let

$$T = \frac{1}{2}m\dot{x}^2, \quad V = V(x), \quad L = T - V,$$

Then:

$$\frac{d}{dt}\left(m\dot{x}\right) = -\frac{dV}{dx} \quad \Rightarrow \quad m\ddot{x} = -\nabla V.$$

This recovers Newton's law: force equals mass times acceleration.

Lagrange Multipliers

Finite-Dimensional Case

Single Constraint

To extremise f(x, y) subject to q(x, y) = c, the condition is:

$$\nabla f = \lambda \nabla g.$$

Interpretation: At an extremum, the level set of f is tangent to the constraint surface q = c.

Multiple Constraints

If $g_1(x, y) = c_1$ and $g_2(x, y) = c_2$, then:

$$\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2.$$

Variational Case (Functional Constraints)

Single Constraint

To extremise

$$F[y] = \int_{a}^{b} f(x, y, y') dx \quad \text{subject to} \quad \int_{a}^{b} g(x, y, y') dx = c,$$

define the augmented functional:

$$H[y] = \int_{a}^{b} \left(f - \lambda g\right) \, dx$$

Apply the Euler–Lagrange equation:

$$\frac{d}{dx}\left(\frac{\partial(f-\lambda g)}{\partial y'}\right) - \frac{\partial(f-\lambda g)}{\partial y} = 0$$

Example: Dido's Problem

- Objective: maximise $A[y] = \int_a^b y(x) dx$ Constraint: $L[y] = \int_a^b \sqrt{1 + (y')^2} dx = L$
- Lagrangian:

$$h = y - \lambda \sqrt{1 + (y')^2}$$

• Apply first-integral form (no *x*-dependence):

$$h - y' \frac{\partial h}{\partial y'} = \text{const} \Rightarrow y - \lambda \frac{1}{\sqrt{1 + (y')^2}} = \text{const.}$$

Legendre Transform

Definition

Let f(x) be a convex, differentiable function. The Legen**dre transform** of f is the function q(p) defined by:

$$g(p) = \sup \left(px - f(x) \right).$$

If f is strictly convex and differentiable, then the supremum occurs where:

$$p = f'(x),$$

and the transform becomes:

$$g(p) = px - f(x)$$
, with $x = (f')^{-1}(p)$.

Inverse

The Legendre transform is **involutive**:

$$f(x) = \sup_{p} \left(px - g(p) \right).$$

Setup

Given a Lagrangian $L(q, \dot{q})$, define the **conjugate momen**tum: a*т*

$$p = \frac{\partial L}{\partial \dot{q}}$$

Hamiltonian

The **Hamiltonian** is defined as the Legendre transform of L with respect to \dot{q} :

$$H(q,p) = p\dot{q} - L(q,\dot{q}).$$

This expression must be rewritten in terms of (q, p) by solving \dot{q} as a function of p.

Geometric Interpretation

- The Legendre transform replaces the variable x with the slope p = f'(x) of the tangent line to the graph of f.
- The value q(p) gives the vertical intercept of that tangent line:

$$g(p) = px - f(x)$$
, with $p = f'(x)$

- The transform captures the geometry of a convex function in terms of its tangents, encoding all the information in terms of slope rather than position.
- **Involutive property:** This viewpoint makes clear why the transform is symmetric:

$$f(x) = \sup_{p} (px - g(p)).$$

Duality Identity

If f(x) and q(p) are Legendre transforms of each other, then:

f(x) + g(p) = px, where p = f'(x) and x = g'(p).

Interpretation: This expresses a dual pairing between the variable x and its conjugate p. The total quantity px is split into two contributions.

Young's Inequality

Statement

Let $a, b \ge 0$, and let p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. Then:

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q},$$

with equality if and only if $a^p = b^q$.

Derivation (via Convexity)

Let $f(x) = \frac{x^p}{p}$. Then f is convex on $[0,\infty)$ because:

$$f''(x) = (p-1)x^{p-2} \ge 0$$
 for $x > 0$.

Let $a, b \ge 0$, and define:

$$f(a) + f^*(b) \ge ab,$$

where f^* is the **Legendre transform** of f. For f(x) = $\frac{x^p}{p}$, we have:

$$f^*(y) = \frac{y^q}{q}, \quad \text{where } \frac{1}{p} + \frac{1}{q} = 1$$

Therefore:

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Equality Condition

Equality holds if and only if the slopes match, i.e.:

$$a^{p-1} = b^{q-1} \quad \Leftrightarrow \quad a^p = b^q.$$

Convexity and Optimisation

Convex Functions

A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for all x, y and $\lambda \in [0, 1]$:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

If the inequality is strict for $x \neq y$, then f is strictly convex.

Second Derivative Test

If f is twice differentiable:

- $f''(x) \ge 0$ for all x implies f is convex.
- f''(x) > 0 for all x implies f is strictly convex.

Convex Optimisation (Single-variable)

Global Minima

If f is convex on an interval, then:

- Any local minimum is a global minimum.
- If f is strictly convex, the global minimum is unique. then y is a strict local minimiser of F.

First-order Condition

If f is differentiable, then:

$$f'(x^*) = 0 \implies x^*$$
 is a local extremum.

If f is convex, this is a global minimum.

Geometric Interpretation

For convex f, the graph lies above all its tangents:

$$f(y) \ge f(x) + f'(x)(y - x).$$

This inequality characterises convexity and forms the basis of duality theory.

Convexity in Variational Calculus

Let $F[y] = \int_{a}^{b} f(x, y, y') dx$ be a functional.

Second Variation

To assess whether F is minimised at y, consider the second variation:

$$\delta^2 F[y](\eta) = \int_a^b \left(\eta^2 \frac{\partial^2 f}{\partial y^2} + 2\eta \eta' \frac{\partial^2 f}{\partial y \partial y'} + (\eta')^2 \frac{\partial^2 f}{\partial y'^2} \right) dx.$$

Sufficient Condition for a Minimum

If $\delta^2 F[y](\eta) > 0$ for all admissible $\eta \neq 0$, then F is strictly convex and y is a strict local minimiser.

Second Variation and Minimisation Criteria

Second Variation

Let $F[y] = \int_a^b f(x, y, y') dx$ be a functional, and suppose y is a critical point (i.e. satisfies the Euler–Lagrange equation). The **second variation** is defined by:

$$\delta^2 F[y](\eta) = \int_a^b \left(\eta^2 \frac{\partial^2 f}{\partial y^2} + 2\eta \eta' \frac{\partial^2 f}{\partial y \partial y'} + (\eta')^2 \frac{\partial^2 f}{\partial y'^2} \right) dx.$$

Interpretation

This arises from expanding $F[y + \varepsilon \eta]$ to second order in ε :

$$F[y + \varepsilon \eta] = F[y] + \varepsilon \delta F[y](\eta) + \frac{\varepsilon^2}{2} \delta^2 F[y](\eta) + \mathcal{O}(\varepsilon^3).$$

Sufficient Condition for a Minimum

Suppose y satisfies the Euler-Lagrange equation for the functional

$$F[y] = \int_a^b f(x, y, y') \, dx,$$

and consider perturbations $y + \varepsilon \eta$ with $\eta(a) = \eta(b) = 0$. If the second variation satisfies:

 $\delta^2 F[y](\eta) > 0$ for all admissible $\eta \neq 0$,

Analogy

This is analogous to the second derivative test in one-variable calculus:

$$f'(x) = 0$$
 and $f''(x) > 0 \Rightarrow$ local minimum

Convexity and Functional Minimisation

If the integrand f(x, y, y') is convex in (y, y') for each x, then the functional

$$F[y] = \int_{a}^{b} f(x, y, y') \, dx$$

is convex on the space of admissible functions.

Implication

If y satisfies the Euler-Lagrange equation and f is convex in (y, y'), then y is a **global minimiser** of F.

Strict Convexity

If f is strictly convex in (y, y'), then any solution y is a strict global minimiser.

Example: Second Variation for $F[y] = \int (y')^2 dx$

Let

 $F[y] = \int_a^b (y')^2 \, dx.$

First Variation

The Euler–Lagrange equation gives:

$$\frac{d}{dx}(2y') = 0 \quad \Rightarrow \quad y'' = 0$$

Solutions are straight lines: y(x) = ax + b.

Second Variation

Perturb y by η with $\eta(a) = \eta(b) = 0$:

$$\delta^2 F[y](\eta) = \int_a^b 2(\eta')^2 \, dx > 0 \quad \text{for all } \eta \neq 0.$$

Hamiltonian Formulation

From Lagrangian to Hamiltonian

Given a Lagrangian $L(q, \dot{q})$, define the **conjugate momentum**:

$$p = \frac{\partial L}{\partial \dot{q}}.$$

Assuming this relation can be inverted to write \dot{q} in terms of p, the **Hamiltonian** is defined via a Legendre transform:

$$H(q,p) = p\dot{q} - L(q,\dot{q})$$

Hamilton's Equations

The dynamics are governed by the system:

$$\dot{q} = \frac{\partial H}{\partial p}, \qquad \dot{p} = -\frac{\partial H}{\partial q}.$$

Fermat's Principle

Light travels between two points along the path that minimises travel time.

Time Functional

In a medium with variable speed v(x, y) (or refractive index n(x, y) = 1/v):

$$T[y] = \int \frac{\sqrt{1 + (y')^2}}{v(x, y)} \, dx = \int n(x, y) \sqrt{1 + (y')^2} \, dx.$$

Euler–Lagrange Equation

Apply the Euler–Lagrange equation to:

$$f(x, y, y') = n(x, y)\sqrt{1 + (y')^2}.$$

Special Case: Snell's Law

If n jumps across a boundary (e.g. piecewise constant), minimising T[y] leads to:

$$\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2}$$

i.e., Snell's Law.

Surface Area Minimisation (Soap Film)

Consider a surface of revolution about the x-axis generated by a curve y(x).

Surface Area Functional

$$A[y] = \int_{a}^{b} 2\pi y \sqrt{1 + (y')^2} \, dx.$$

Euler–Lagrange Equation

For

$$f(y, y') = 2\pi y \sqrt{1 + (y')^2},$$

the Euler–Lagrange equation gives the minimal surface of revolution:

$$\frac{d}{dx}\left(\frac{y'}{\sqrt{1+(y')^2}}\right) = \frac{1}{y} \cdot \frac{1}{\sqrt{1+(y')^2}}$$

Solution: The minimising surface is a catenoid:

$$y(x) = a \cosh\left(\frac{x - x_0}{a}\right).$$

Bernoulli's Equation

Steady Flow (Inviscid, Incompressible, Irrotational)

For a steady, inviscid, incompressible, and irrotational flow:

$$\frac{1}{2}\rho u^2 + p + \rho \Phi = \text{constant along a streamline.}$$

Interpretation: Kinetic + pressure + potential energy per unit volume is conserved.

Special Cases

• $\Phi = gz$ for gravity potential \Rightarrow classic Bernoulli:

$$\frac{1}{2}u^2 + \frac{p}{\rho} + gz = \text{const.}$$

• Applies globally only for irrotational flow. Otherwise, only along streamlines.

Unsteady Bernoulli Equation

Assume unsteady, irrotational, incompressible, inviscid flow. The velocity field is a potential flow:

 $\vec{u} = \nabla \phi.$

From Euler's Equation:

$$\frac{\partial \vec{u}}{\partial t} + \nabla \left(\frac{1}{2} u^2 + \frac{p}{\rho} + \Phi \right) = 0$$

Integrate in space:

$$\frac{\partial \phi}{\partial t} + \frac{1}{2}u^2 + \frac{p}{\rho} + \Phi = f(t)$$

where f(t) is a function of time only. Standard form:

$$\frac{\partial \phi}{\partial t} + \frac{1}{2}u^2 + \frac{p}{\rho} + \Phi = \text{const (in space)}.$$

Derivation (Steady Case)

$$(\vec{u} \cdot \nabla)\vec{u} = -\frac{1}{\rho}\nabla p - \nabla\Phi.$$

Use vector identity:

$$(\vec{u} \cdot \nabla)\vec{u} = \nabla\left(\frac{1}{2}u^2\right) - \vec{u} \times (\nabla \times \vec{u}).$$

If flow is irrotational: $\nabla \times \vec{u} = 0$, so:

$$\nabla\left(\frac{1}{2}u^2 + \frac{p}{\rho} + \Phi\right) = 0.$$

Integrate

Streamfunction and Velocity Potential

Streamfunction ψ (2D Incompressible Flow)

Defined such that:

$$u = \frac{\partial \psi}{\partial y}, \qquad v = -\frac{\partial \psi}{\partial x}.$$

Properties:

- Automatically satisfies incompressibility: $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0.$
- Lines of constant ψ are streamlines.

Velocity Potential ϕ (Irrotational Flow)

Defined such that:

$$\vec{u} = \nabla \phi$$
 (i.e., $u = \frac{\partial \phi}{\partial x}$, $v = \frac{\partial \phi}{\partial y}$).

Properties:

- Flow is irrotational: $\nabla \times \vec{u} = 0$.
- ϕ satisfies Laplace's equation in incompressible flow: $\nabla^2 \phi = 0.$

Poiseuille and Couette Flow

Poiseuille Flow (Pressure-Driven Flow)

Description: Steady, fully-developed, incompressible viscous flow between two stationary parallel plates (or inside a circular pipe), driven by a pressure gradient.

• Unidirectional flow:
$$\vec{u} = u(y) \mathbf{i}$$

• $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial z} = 0$

•
$$\frac{\partial p}{\partial y} = 0, \ \frac{\partial p}{\partial z} = 0$$

 \mathbf{S}

$$u(y) = \frac{1}{2\mu} \frac{\mathrm{d}p}{\mathrm{d}x}$$

Boundary Conditions:

• No-slip: u(0) = 0, u(H) = 0

Profile: Parabolic velocity profile with maximum at channel center.

Couette Flow (Shear-Driven Flow)

Description: Steady viscous flow between two parallel plates, with the bottom plate stationary and the top plate moving at velocity U.

Assumptions:

- Unidirectional flow: $\vec{u} = u(y) \hat{\mathbf{i}}$
- No pressure gradient: $\frac{\partial p}{\partial x} = 0$

$$u(y) = Ay + B$$

Boundary Conditions:

- u(0) = 0 (stationary plate)
- u(H) = U (moving plate) Solution:

$$u(y) = \frac{U}{H}y$$

Profile: Linear velocity profile.

Vorticity Equation and 2D Incompressible Flow

Vorticity Transport Equation

For an **incompressible**, **inviscid** flow, taking the curl of the Euler equation yields:

$$\frac{D\boldsymbol{\omega}}{Dt} = (\boldsymbol{\omega}\cdot\nabla)\boldsymbol{u}$$

In **2D** incompressible flow, the right-hand side vanishes (since $\boldsymbol{\omega}$ is perpendicular to the plane of motion), so:

$$\frac{D\omega}{Dt} = 0.$$

Implications in 2D Incompressible Flow

- $\omega = \text{constant}$ along trajectories.
- If the initial flow is **irrotational** ($\omega = 0$), it remains irrotational.
- If initially **vortical**, the distribution of vorticity is merely **advected** by the flow.

Relation to Streamfunction

For 2D incompressible flows, define a stream function ψ such that:

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}.$$

Then the vorticity becomes:

$$\omega = -\nabla^2 \psi.$$

Surface Wave Theory

Boundary Conditions

• Bottom Boundary Condition (Impenetrability):

$$w = 0$$
 at $z = -h_z$

where w is the vertical velocity and h is the fluid depth.
Kinematic Boundary Condition (Free Surface):

$$\frac{\partial \eta}{\partial t} + u \frac{\partial \eta}{\partial x} = w \quad \text{at } z = \eta(x,t),$$

where $\eta(x,t)$ is the surface elevation. For linear theory, this is often approximated as:

$$\frac{\partial \eta}{\partial t} = w \quad \text{at } z = 0$$

• Dynamic Boundary Condition (Free Surface Pressure):

$$p = p_{\text{atm}}$$
 at $z = \eta(x, t)$.

In linearised theory:

$$p = 0$$
 at $z = 0$,

assuming constant atmospheric pressure and neglecting surface tension.

Dispersion Relation

For inviscid, incompressible, irrotational flow with a free surface under gravity, the dispersion relation is:

$$\omega^2 = gk \tanh(kh)$$

Potential Flow Solutions

Flow Around a Cylinder

Velocity potential:

$$\phi = U\left(r + \frac{a^2}{r}\right)\cos\theta$$

Streamfunction:

$$\psi = U\left(r - \frac{a^2}{r}\right)\sin\theta$$

Velocity components:

$$u_r = U\left(1 - \frac{a^2}{r^2}\right)\cos\theta, \quad u_\theta = -U\left(1 + \frac{a^2}{r^2}\right)\sin\theta$$

Pressure (via Bernoulli):

$$\frac{p}{\rho} + \frac{1}{2}|\vec{u}|^2 = \text{const}$$

Flow Around a Cylinder with Circulation Velocity potential:

$$\phi = U\left(r + \frac{a^2}{r}\right)\cos\theta + \frac{\Gamma}{2\pi}\theta$$

Streamfunction:

$$\psi = U\left(r - \frac{a^2}{r}\right)\sin\theta - \frac{\Gamma}{2\pi}\ln r$$

Lift (Kutta–Joukowski theorem):

$$L = \rho U \Gamma$$

Stagnation point shift: Circulation displaces the stagnation points off the horizontal axis.

Flow Around a Sphere

Velocity potential:

$$\phi = U\left(r + \frac{a^3}{2r^2}\right)\cos\theta$$

Velocity field:

$$u_r = U\left(1 - \frac{a^3}{r^3}\right)\cos\theta, \quad u_\theta = -U\left(1 + \frac{a^3}{2r^3}\right)\sin\theta$$

Result: Zero drag (D'Alembert's paradox), symmetric pressure distribution.

Added Mass

Definition: Effective mass of fluid accelerated along with the body.

Sphere moving in fluid: Added mass is:

$$m_{\rm added} = \frac{1}{2}\rho \left(\frac{4}{3}\pi a^3\right)$$

Cylinder (2D) moving in fluid:

$$m_{\rm added} = \pi \rho a^2$$

Kelvin's Circulation Theorem

Statement

In an inviscid, barotropic fluid with conservative body forces, the circulation around a material (fluid-following) loop is conserved:

$$\frac{D\Gamma}{Dt} = 0$$
, where $\Gamma = \oint_{\mathcal{C}(t)} \vec{u} \cdot d\vec{x}$.

Rotating Fluids and Shallow/Deep Water

Rotating Fluids and the Coriolis Force

In a frame rotating with angular velocity Ω , the Navier–Stokes equation becomes:

$$\rho \frac{D\vec{u}}{Dt} + 2\rho \,\mathbf{\Omega} \times \vec{u} = -\nabla p + \rho \vec{g} + \mu \nabla^2 \vec{u},$$

where $2\mathbf{\Omega} \times \vec{u}$ is the **Coriolis force**.

- In large-scale geophysical flows, this term becomes dominant.
- Leads to phenomena such as **geostrophic balance**:

$$-\frac{1}{\rho}\nabla p = 2\mathbf{\Omega} \times \vec{u}.$$

Shallow Water Equations

Assume horizontal length scales \gg vertical scale. Let h(x, t) be fluid height and $\vec{u}(x, t)$ horizontal velocity.

• Mass conservation:

$$\frac{\partial h}{\partial t} + \nabla \cdot (h\vec{u}) = 0$$

• Momentum conservation:

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} = -g\nabla h$$

Linearised Shallow Water Equations

Linearise about rest state with small perturbations. Then:

$$\frac{\partial \eta}{\partial t} + H \nabla \cdot \vec{u} = 0, \qquad \frac{\partial \vec{u}}{\partial t} = -g \nabla \eta$$

Leads to the wave equation:

$$\frac{\partial^2 \eta}{\partial t^2} = c^2 \nabla^2 \eta$$
, with $c = \sqrt{gH}$

Deep Water Waves

For waves where water depth $h \to \infty$, the dispersion relation becomes:

$$\omega^2 = gk$$

with:

$$\lambda = \frac{2\pi}{k}, \qquad c = \frac{\omega}{k} = \sqrt{\frac{g}{k}}, \qquad c_g = \frac{d\omega}{dk} = \frac{1}{2}c.$$

Key features:

- Phase speed decreases with increasing k (shorter wavelengths move slower).
- Group velocity is half the phase speed.

Boundary Conditions in Fluid Dynamics

1. Free Surface

Let the free surface be given by $z = \eta(x, y, t)$.

Kinematic Boundary Condition

No fluid crosses the surface:

$$\frac{D\eta}{Dt} = \frac{\partial\eta}{\partial t} + u\frac{\partial\eta}{\partial x} + v\frac{\partial\eta}{\partial y} = w \quad \text{on } z = \eta(x, y, t)$$

Linearised:

$$\frac{\partial \eta}{\partial t} = w \quad \text{at } z = 0$$

Dynamic Boundary Condition

Balance of pressure at the surface:

$$p = p_{\text{atm}}$$
 on $z = \eta(x, y, t)$

2. Rigid Boundary

Let the rigid boundary be at z = h(x, y) (or simply z = 0).

Kinematic Boundary Condition

No flow through the wall:

$$\vec{u} \cdot \hat{n} = 0$$
 (normal component vanishes)

If the wall is flat at z = 0, then:

$$w = 0$$
 on $z = 0$

More generally: if the surface is z = h(x, y),

$$w = u \frac{\partial h}{\partial x} + v \frac{\partial h}{\partial y}$$
 on $z = h(x, y)$

Dynamic Boundary Condition

Not generally required — the wall can exert any normal stress.

3. Interface Between Two Fluids

Let two fluids (densities ρ_1 , ρ_2) meet at a surface z = Let the velocity potentials be: $\eta(x, y, t).$

Kinematic Condition

The interface must move with the fluid:

$$\left. \frac{D\eta}{Dt} \right|_{\text{fluid 1}} = \left. \frac{D\eta}{Dt} \right|_{\text{fluid 2}} = w \text{ on interface}$$

Dynamic Condition

Normal stress must be continuous **No surface tension**:

$$p_1 = p_2$$
 across the interface

Tangential Stress Condition (Viscous case)

If viscosity is included, continuity of tangential stress is also required:

$$\left[\mu\left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)\right]_{\text{across interface}} = 0 \quad \text{and similarly for } v$$

Conservation of Momentum (Integral Form)

Let $\mathcal{V}(t)$ be a control volume with boundary $\partial \mathcal{V}(t)$, velocity field \vec{u} , pressure p, and external body force per unit mass \vec{f} (e.g., gravity).

Statement

$$\frac{d}{dt} \int_{\mathcal{V}(t)} \rho \vec{u} \, dV + \int_{\partial \mathcal{V}(t)} \rho \vec{u} (\vec{u} \cdot \hat{n}) \, dS = \int_{\partial \mathcal{V}(t)} \boldsymbol{\sigma} \cdot \hat{n} \, dS + \int_{\mathcal{V}(t)} \rho \vec{f} \, dV \overset{v}{=} \int_{\partial \mathcal{V}(t)} \rho \vec{f} \, dV$$

Terms

- $\int \rho \vec{u} \, dV$: total momentum in the control volume.
- $\int_{\partial \mathcal{V}} \rho \vec{u} (\vec{u} \cdot \hat{n}) \, dS$: momentum flux across the boundary.
- $\int \boldsymbol{\sigma} \cdot \hat{n} \, dS$: surface forces (normal + viscous stresses).
- $\int_{\mathcal{N}} \rho \vec{f} \, dV$: body forces (e.g. gravity).

Simplification (Inviscid Flow)

If the fluid is inviscid, then the stress tensor reduces to -pI, so:

$$\boldsymbol{\sigma}\cdot\hat{n} = -p\hat{n} \quad \Rightarrow \quad \int_{\partial\mathcal{V}} \boldsymbol{\sigma}\cdot\hat{n}\,dS = -\int_{\partial\mathcal{V}} p\hat{n}\,dS$$

Interfacial Wave Dispersion Relation

Consider two immiscible, incompressible fluid layers of densities ρ_1 (upper) and ρ_2 (lower), with $\rho_2 > \rho_1$. The interface lies at z = 0 in the undisturbed state. We assume irrotational motion and linearise the governing equations.

Velocity Potentials

$$\phi_1(x, z, t) = A_1 e^{\kappa z} e^{i(\kappa x - \omega t)} \quad \text{for } z < 0 \quad (\text{upper fluid}),$$

$$\phi_2(x, z, t) = A_2 e^{-kz} e^{i(kx - \omega t)} \quad \text{for } z > 0 \quad (\text{lower fluid}).$$

.

Boundary Conditions at the Interface

 $h = k \cdot a \cdot (k \cdot r - (v \cdot t))$

• Kinematic condition (both fluids):

$$\frac{\partial \phi_1}{\partial z} = \frac{\partial \eta}{\partial t}, \quad \frac{\partial \phi_2}{\partial z} = \frac{\partial \eta}{\partial t} \quad \text{at } z = 0$$

• Dynamic condition (pressure continuity):

$$\rho_1\left(\frac{\partial\phi_1}{\partial t} + g\eta\right) = \rho_2\left(\frac{\partial\phi_2}{\partial t} + g\eta\right) \quad \text{at } z = 0$$

Dispersion Relation

Combining the conditions yields the dispersion relation for interfacial gravity waves:

$$\omega^2 = gk\frac{\rho_2 - \rho_1}{\rho_2 + \rho_1}.$$

Lift on a Cylinder (Pressure Integration)

Setup

Consider steady, incompressible, irrotational flow with circulation Γ past a cylinder of radius *a*. The velocity field in polar coordinates (r, θ) is:

$$S + \int_{\mathcal{V}(t)} \rho \vec{f} \, dV \quad v_r = U\left(1 - \frac{a^2}{r^2}\right) \cos\theta, \quad v_\theta = -U\left(1 + \frac{a^2}{r^2}\right) \sin\theta + \frac{\Gamma}{2\pi r}.$$

On the surface
$$r = a$$

$$v_r = 0, \quad v_\theta = -2U\sin\theta + \frac{\Gamma}{2\pi a}$$

Pressure from Bernoulli

Apply Bernoulli's equation (assuming constant pressure at infinity):

$$p = p_{\infty} + \frac{1}{2}\rho(U^2 - v^2),$$

where $v^2 = v_{\theta}^2$ on the surface.

Lift Force

The lift is the vertical component of pressure force:

$$L = -\int_0^{2\pi} p(\theta) \cdot a \sin \theta \, d\theta.$$

Substitute v_{θ} and compute:

$$v_{\theta} = -2U\sin\theta + \frac{\Gamma}{2\pi a}, \quad v^2 = \left(-2U\sin\theta + \frac{\Gamma}{2\pi a}\right)^2.$$

Only the cross term in v^2 contributes to the integral:

$$L = \rho U \int_0^{2\pi} \left(2U \sin \theta \cdot \frac{\Gamma}{2\pi a} \right) a \sin \theta \, d\theta = \rho U \Gamma$$

Continuity Equation in Quantum Mechanics

The continuity equation expresses the local conservation of probability:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0$$

where:

• $\rho = |\psi|^2$ is the **probability density**

• j is the probability current density

Derivation from the Schrödinger Equation

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + V\psi$$

Multiply by ψ^* and subtract the complex conjugate of the equation multiplied by ψ :

$$\psi^* \frac{\partial \psi}{\partial t} + \psi \frac{\partial \psi^*}{\partial t} = \frac{\hbar}{2im} \nabla \cdot (\psi^* \nabla \psi - \psi \nabla \psi^*)$$
$$\frac{\partial}{\partial t} |\psi|^2 + \nabla \cdot \left(\frac{\hbar}{2im} (\psi^* \nabla \psi - \psi \nabla \psi^*)\right) = 0$$

Thus, the probability current density is:

$$\mathbf{j} = \frac{\hbar}{2im} (\psi^* \nabla \psi - \psi \nabla \psi^*)$$

Integral Form

The integral form over a region Ω with boundary $\partial \Omega$:

$$\frac{d}{dt} \int_{\Omega} |\psi|^2 \, dV = -\int_{\partial \Omega} \mathbf{j} \cdot \hat{\mathbf{n}} \, dS$$

The continuity equation ensures that probability is conserved. The total probability inside a region changes only due to the flux of probability current across the boundary.

Angular Momentum Operator

The orbital angular momentum operator is defined as:

$$\vec{L} = \vec{r} \times \vec{p} \quad \Rightarrow \quad L_i = \epsilon_{ijk} x_j (-i\hbar\partial_k) = -i\hbar\epsilon_{ijk} x_j \partial_k.$$

Cartesian Components

$$L_x = -i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right), \quad L_y = -i\hbar \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right),$$
$$L_z = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right).$$

Commutation Relations

$$[L_i, L_j] = i\hbar\epsilon_{ijk}L_k.$$
$$[L^2, L_i] = 0 \quad \text{for all } i.$$
$$[L_i, x_j] = i\hbar\epsilon_{ijk}x_k, \quad [L_i, p_j] = i\hbar\epsilon_{ijk}p_k.$$

Eigenfunctions in Spherical Coordinates

For central potentials, the Schrödinger equation reduces to an equation involving L^2 .

• The eigenfunctions of L^2 and L_z are the spherical harmonics:

$$L^{2}Y_{\ell m} = \hbar^{2}\ell(\ell+1)Y_{\ell m}, \quad L_{z}Y_{\ell m} = \hbar m Y_{\ell m}.$$

• $\ell \in \mathbb{Z}_{\geq 0}$, and $m = -\ell, -\ell + 1, \dots, \ell$.

Heisenberg Uncertainty Principle

Statement

For any pair of observables A and B, represented by Hermitian operators \hat{A} , \hat{B} , the uncertainty relation is:

$$\sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right)^2,$$

where $\sigma_A^2 = \langle (\hat{A} - \langle \hat{A} \rangle)^2 \rangle$ is the variance of A, and similarly for σ_B^2 .

Cauchy–Schwarz Derivation

Let $\psi \in \mathcal{H}$, and define:

$$\Delta \hat{A} = \hat{A} - \langle \hat{A} \rangle, \quad \Delta \hat{B} = \hat{B} - \langle \hat{B} \rangle.$$

Apply the Cauchy–Schwarz inequality:

$$|\langle \Delta \hat{A}\psi, \Delta \hat{B}\psi\rangle|^2 \leq \langle \Delta \hat{A}\psi, \Delta \hat{A}\psi\rangle \cdot \langle \Delta \hat{B}\psi, \Delta \hat{B}\psi\rangle.$$

This becomes:

$$\langle \psi | \Delta \hat{A} \Delta \hat{B} | \psi \rangle |^2 \le \sigma_A^2 \sigma_B^2$$

Write:

$$\langle \Delta \hat{A} \Delta \hat{B} \rangle = \frac{1}{2} \langle \{ \Delta \hat{A}, \Delta \hat{B} \} \rangle + \frac{1}{2} \langle [\Delta \hat{A}, \Delta \hat{B}] \rangle$$

Use:

$$|\langle \Delta \hat{A} \Delta \hat{B} \rangle|^2 \geq \left(\frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right)^2.$$

This gives the uncertainty relation.

Application to Position and Momentum

For \hat{x} and \hat{p} , we have:

$$[\hat{x}, \hat{p}] = i\hbar, \quad \Rightarrow \quad \sigma_x \sigma_p \ge \frac{\hbar}{2}.$$

General Observables

For any pair of Hermitian operators \hat{A}, \hat{B} , this yields a constraint on the product of variances:

$$\sigma_A^2 \sigma_B^2 \geq \left(\frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right)^2.$$

Harmonic Oscillator Example

Ground state wavefunction:

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-m\omega x^2/2\hbar}.$$

Then:

$$\sigma_x^2 = \frac{\hbar}{2m\omega}, \quad \sigma_p^2 = \frac{\hbar m\omega}{2} \quad \Rightarrow \quad \sigma_x \sigma_p = \frac{\hbar}{2}.$$

This saturates the inequality — the ground state of the harmonic oscillator is a **minimum uncertainty state**.

Interpretation

- The lower bound of the uncertainty relation is reached only when the state is a Gaussian wavepacket. - Equality occurs when the commutator and anticommutator terms are aligned in phase.

Hydrogen Atom

Time-Independent Schrödinger Equation

The potential for the hydrogen atom is:

$$V(r) = -\frac{e^2}{4\pi\varepsilon_0 r}.$$

In spherical coordinates, the time-independent Schrödinger equation is:

$$-\frac{\hbar^2}{2\mu}\nabla^2\psi + V(r)\psi = E\psi.$$

Separation of Variables

Assume $\psi(r, \theta, \phi) = R(r)Y(\theta, \phi)$, where $Y(\theta, \phi)$ are spherical harmonics satisfying:

$$L^2 Y = \hbar^2 \ell (\ell + 1) Y.$$

Radial Equation Derivation

The radial equation becomes:

$$-\frac{\hbar^2}{2\mu} \left[\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) - \frac{\ell(\ell+1)}{r^2} R \right] - \frac{e^2}{4\pi\varepsilon_0 r} R = ER$$

Let u(r) = rR(r), giving the simpler form:

$$-\frac{\hbar^2}{2\mu}\frac{d^2u}{dr^2} + \left[\frac{\hbar^2\ell(\ell+1)}{2\mu r^2} - \frac{e^2}{4\pi\varepsilon_0 r}\right]u = Eu.$$

Energy Levels

Solutions for u(r) lead to the quantised energy levels:

$$E_n = -\frac{\mu e^4}{32\pi^2 \varepsilon_0^2 \hbar^2 n^2} = -\frac{13.6 \,\mathrm{eV}}{n^2}, \quad n = 1, 2, 3, \dots$$

Quantum Numbers and Allowed Values

- $n \in \mathbb{Z}^+$: principal quantum number. - $\ell = 0, 1, ..., n - 1$: angular momentum quantum number. - $m = -\ell, -\ell + 1, ..., \ell$: magnetic quantum number.

Inequality: $|m| \leq \ell$.

Wavefunction Interpretation

- The total wavefunction is:

$$\psi_{n\ell m}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell m}(\theta,\phi).$$

- $R_{n\ell}(r)$ determines the radial distribution; nodes increase with $n - \ell - 1$. - $Y_{\ell m}$ determines angular dependence; complex-valued in general. - The probability density is:

$$|\psi(r,\theta,\phi)|^2 = |R(r)|^2 |Y_{\ell m}(\theta,\phi)|^2.$$

- The radial probability density is:

$$P(r) dr = |R(r)|^2 r^2 dr = |u(r)|^2 dr.$$

Degeneracy

The degeneracy of the n-th energy level is:

$$g(n) = \sum_{\ell=0}^{n-1} (2\ell + 1) = n^2.$$

Asymptotic Behaviour of u(r)

For large r: $u(r) \sim e^{-\alpha r}$ for some $\alpha > 0$. For small r: $u(r) \sim r^{\ell+1}$ to cancel the $1/r^2$ centrifugal term.

Hermitian Operators and Expectation Values

Definition

An operator A is **Hermitian** if:

$$\int \psi_1^*(A\psi_2) \, dx = \int (A\psi_1)^* \psi_2 \, dx \quad \text{for all } \psi_1, \psi_2.$$

This implies $\langle \psi, A\psi \rangle \in \mathbb{R}$, i.e., expectation values are real.

Expectation Value

Given a normalized state ψ , the expectation value of observable A is:

$$\langle A \rangle = \int \psi^* A \psi \, dx.$$

If A is Hermitian, then $\langle A \rangle \in \mathbb{R}$.

Eigenfunctions and Spectra

If A is Hermitian:

- Eigenvalues are real.
- Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

Hermiticity of Common Operators

- Position operator: \hat{x} is Hermitian.
- Momentum operator: $\hat{p} = -i\hbar\partial_x$ is Hermitian with suitable boundary conditions.
- Hamiltonian *H* is Hermitian so that energy is real and probability is conserved.

Commutators and Hermiticity

For two Hermitian operators A, B, the commutator [A, B] is anti-Hermitian:

$$[A,B]^{\dagger} = -[A,B].$$

So i[A, B] is Hermitian.

Ehrenfest's Theorem

Derivation from Time-Dependent Schrödinger Equation (TDSE)

Let $\langle A \rangle = \langle \psi | \hat{A} | \psi \rangle$ be the expectation value of an operator \hat{A} in the state $\psi(x, t)$ satisfying the TDSE:

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}\psi.$$

Then the time derivative of the expectation value is:

$$\frac{d}{dt}\langle A\rangle = \left\langle \frac{\partial \hat{A}}{\partial t} \right\rangle + \frac{1}{i\hbar} \langle [\hat{A}, \hat{H}] \rangle.$$

If \hat{A} has no explicit time dependence, this simplifies to:

$$\frac{d}{dt}\langle A\rangle = \frac{1}{i\hbar}\langle [\hat{A},\hat{H}]\rangle$$

Applications to Position and Momentum

Take the standard Hamiltonian:

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}).$$

Using the commutation relation $[\hat{x}, \hat{p}] = i\hbar$, we get: For position:

$$\frac{d}{dt} \langle \hat{x} \rangle = \frac{1}{i \hbar} \langle [\hat{x}, \hat{H}] \rangle = \frac{1}{m} \langle \hat{p} \rangle$$

For momentum:

$$\frac{d}{dt}\langle \hat{p}\rangle = \frac{1}{i\hbar}\langle [\hat{p}, \hat{H}]\rangle = -\left\langle \frac{dV}{dx}\right\rangle.$$

Classical Correspondence

These resemble Newton's laws:

$$\frac{d}{dt}\langle\hat{x}
angle = \frac{\langle\hat{p}
angle}{m}, \qquad \frac{d}{dt}\langle\hat{p}
angle = \langle F
angle.$$

Interpretation: The expectation values of quantum observables obey classical equations of motion — this is a form of the quantum-to-classical correspondence principle.

1D Potential Square Well

Infinite Square Well

Potential

$$V(x) = \begin{cases} 0, & 0 < x < a, \\ \infty, & \text{otherwise.} \end{cases}$$

The wavefunction $\psi(x)$ must vanish at x = 0 and x = a, since the potential is infinite outside.

In the region 0 < x < a, the time-independent Schrödinger equation becomes:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E\psi,$$

with general solution:

$$\psi(x) = A\sin(kx) + B\cos(kx), \quad k = \frac{\sqrt{2mE}}{\hbar}.$$

$$\psi(0) = 0 \Rightarrow B = 0, \quad \psi(a) = 0 \Rightarrow \sin(ka) = 0 \Rightarrow k = \frac{n\pi}{a}$$

Energy Levels

$$E_n = \frac{\hbar^2 \pi^2 n^2}{2ma^2}, \quad n = 1, 2, 3, \dots$$

Normalised Wavefunctions

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right), \quad 0 < x < a.$$

Quantum Harmonic Oscillator and Ladder Operators

Hamiltonian

The quantum harmonic oscillator has Hamiltonian:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2.$$

Ladder Operators

Define the annihilation and creation operators:

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right), \quad \hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right).$$

Commutation Relation

$$[\hat{a}, \hat{a}^{\dagger}] = 1.$$

Hamiltonian in Terms of Ladder Operators

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right)$$

Define the number operator:

$$\hat{N} = \hat{a}^{\dagger} \hat{a}, \text{ with } \hat{N} |n\rangle = n |n\rangle$$

Then the eigenstates and energies are:

$$\hat{H}|n\rangle = \hbar\omega\left(n+\frac{1}{2}\right)|n\rangle, \quad n = 0, 1, 2, \dots$$

Action of Ladder Operators

$$\hat{a}|n\rangle = \sqrt{n}|n-1\rangle, \quad \hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle.$$

Ground State Wavefunction

The ground state satisfies $\hat{a}|0\rangle = 0$, leading to:

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega x^2}{2\hbar}}.$$

Excited States

Higher wavefunctions can be obtained by applying \hat{a}^{\dagger} repeatedly:

$$\psi_n(x) = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n \psi_0(x)$$

They can also be expressed in terms of Hermite polynomials:

$$\psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-\frac{m\omega x^2}{2\hbar}}.$$

Time-Dependent Perturbation Theory

General Setup

Suppose the Hamiltonian is of the form:

$$\hat{H}(t) = \hat{H}_0 + \lambda \hat{V}(t),$$

where \hat{H}_0 is the unperturbed Hamiltonian and $\hat{V}(t)$ is a small time-dependent perturbation.

Assume:

$$H_0|n\rangle = E_n|n\rangle$$

First-Order Transition Amplitude

The first-order probability amplitude to transition from \Box state $|i\rangle$ to $|f\rangle$ is:

$$c_f^{(1)}(t) = \frac{1}{i\hbar} \int_0^t \langle f | \hat{V}(t') | i \rangle e^{i\omega_{fi}t'} dt', \quad \text{where } \omega_{fi} = \frac{E_f - E_i}{\hbar}$$

Transition Probability

$$P_{i \to f}(t) = |c_f^{(1)}(t)|^2.$$

Fermi's Golden Rule

If $\hat{V}(t) = \hat{V}e^{-i\omega t} + \text{c.c.}$, and there's a continuum of final states:

$$\Gamma_{i \to f} = \frac{2\pi}{\hbar} |\langle f | \hat{V} | i \rangle|^2 \rho(E_f),$$

where $\rho(E_f)$ is the density of final states.

Delta Function Potential

Potential Definition

$$V(x) = -\alpha\delta(x), \quad \alpha > 0.$$

Time-Independent Schrödinger Equation

$$\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} - \alpha\delta(x)\psi(x) = E\psi(x).$$

Bound State Solution

Seek solution $\psi(x) = Ae^{-\kappa|x|}$ with $\kappa > 0$. Matching discontinuity in derivative:

$$\psi'(0^+) - \psi'(0^-) = -\frac{2m\alpha}{\hbar^2}\psi(0).$$

Gives:

$$\kappa = \frac{m\alpha}{\hbar^2}, \quad E = -\frac{m\alpha^2}{2\hbar^2}.$$

Normalised Wavefunction

$$\psi(x) = \sqrt{\kappa} e^{-\kappa|x|}.$$

Boundary Conditions

- $\psi(x)$ is continuous at x = 0.
- Discontinuity in derivative given by delta potential:

$$\psi'(0^+) - \psi'(0^-) = -\frac{2m\alpha}{\hbar^2}\psi(0).$$

Two-Level Systems and Time Evolution

General State

Let
$$|\psi(t)\rangle = c_1(t)|1\rangle + c_2(t)|2\rangle$$
, where:
 $\hat{H}|1\rangle = E_1|1\rangle$, $\hat{H}|2\rangle = E_2|2\rangle$

Time Evolution

If no perturbation:

$$|\psi(t)\rangle = c_1(0)e^{-iE_1t/\hbar}|1\rangle + c_2(0)e^{-iE_2t/\hbar}|2\rangle$$

Revival Time

Define
$$\Delta E = E_2 - E_1$$
. Then the **revival time** is:

$$T = \frac{2\pi\hbar}{\Delta E}.$$

At time T, the system returns to its initial state up to a global phase.

Oscillations in Probability

$$|c_1(t)|^2 = |c_1(0)|^2$$
, $|c_2(t)|^2 = |c_2(0)|^2$,

but relative phase oscillates, giving interference in observables.

With Coupling (e.g. Rabi oscillations)

If a time-dependent coupling exists between $|1\rangle$ and $|2\rangle$, governed by $\hat{V}(t) = \hbar \Omega \cos(\omega t) \hat{\sigma}_x$, transition probabilities oscillate sinusoidally (Rabi formula).

Spectral Theorem for Real Self-Adjoint Operators

Definition (Self-Adjoint Operator): Let V be a finitedimensional inner product space over \mathbb{R} . A linear map $\alpha \in \mathcal{L}(V)$ is called *self-adjoint* if

$$\langle \alpha(v), w \rangle = \langle v, \alpha(w) \rangle$$
 for all $v, w \in V$.

Lemma: Let $\alpha \in \mathcal{L}(V)$ be self-adjoint. Then all eigenvalues of α are real.

Proof sketch: Let $v \in V$ be an eigenvector with eigenvalue λ , so $\alpha(v) = \lambda v$. Then

$$\lambda \langle v, v \rangle = \langle \alpha(v), v \rangle = \langle v, \alpha(v) \rangle = \overline{\lambda} \langle v, v \rangle,$$

so $\lambda = \overline{\lambda} \in \mathbb{R}$.

Lemma: Eigenvectors of a self-adjoint operator corresponding to distinct eigenvalues are orthogonal.

Proof sketch: Let $\alpha(v) = \lambda v$ and $\alpha(w) = \mu w$ with $\lambda \neq \mu$. Then

$$\lambda \langle v, w \rangle = \langle \alpha(v), w \rangle = \langle v, \alpha(w) \rangle = \mu \langle v, w \rangle$$

so $(\lambda - \mu) \langle v, w \rangle = 0$ implies $\langle v, w \rangle = 0$.

Spectral Theorem (Real Case): Let V be a finitedimensional inner product space over \mathbb{R} . Then every selfadjoint linear operator $\alpha \in \mathcal{L}(V)$ is diagonalizable, and there exists an orthonormal basis of V consisting of eigenvectors of α .

Equivalently: If A is a real symmetric matrix, then A is orthogonally diagonalizable: there exists $Q \in O(n)$ such that $Q^T A Q$ is diagonal.

Proof: We proceed by induction on $\dim V$.

Base case: dim V = 1 is trivial.

Inductive step: Assume the result for dimension n-1. Since α is self-adjoint, it has a real eigenvalue λ with eigenvector $v \neq 0$. Let $U = \langle v \rangle^{\perp}$.

Claim: U is α -invariant.

Let $u \in U$, so $\langle u, v \rangle = 0$. Then

$$\langle \alpha(u), v \rangle = \langle u, \alpha(v) \rangle = \langle u, \lambda v \rangle = \lambda \langle u, v \rangle = 0,$$

so $\alpha(u) \in U$.

Thus, $\alpha|_U$ is self-adjoint on a space of dimension n-1. By the inductive hypothesis, U has an orthonormal basis of eigenvectors of α . Together with v/||v||, this gives an orthonormal basis of eigenvectors for V.

Sylvester's Law of Inertia

Theorem (Sylvester's Law of Inertia): Let V be a finite-dimensional real inner product space, and let b: $V \times V \rightarrow \mathbb{R}$ be a symmetric bilinear form. Then there exists a basis of V in which the matrix of b is diagonal with entries in $\{-1, 0, 1\}$, and the number of each of these entries (the signature) is independent of the choice of diagonalizing basis.

In other words, any real symmetric bilinear form is congruent to a diagonal matrix with only +1, -1, and 0 entries, and the number of each is an invariant of the form.

Definition: The *signature* of a symmetric bilinear form is the triple (n_+, n_-, n_0) where:

- n_+ = number of +1s (positive index),
- n_{-} = number of -1s (negative index),
- n_0 = number of 0s (nullity).

Proof Sketch:

- Choose a basis and represent *b* by a real symmetric matrix *A*.
- Use orthogonal change of basis (Gram–Schmidt and congruence) to bring A into diagonal form.
- Diagonal entries must be real (since A is symmetric).
- Using congruence (not similarity), the diagonal matrix has entries in $\{-1, 0, 1\}$ after scaling.
- Sylvester's Law says the counts of each type (+1, -1, 0) are invariant under congruence transformations.

Example: Let

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

This matrix is real symmetric, so it represents a symmetric bilinear form on \mathbb{R}^2 .

Compute eigenvalues: $2 \pm 1 = 3, 1$ (both positive), so it is positive definite. Thus, its signature is (2, 0, 0).

Now consider:

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Signature is clearly (1, 1, 1) — Sylvester's Law asserts that no congruence transformation can change this signature.

Gram–Schmidt Orthogonalization

Let V be a finite-dimensional inner product space over \mathbb{R} . Suppose $\{v_1, v_2, \ldots, v_n\}$ is a basis for V. The *Gram-Schmidt process* produces an orthonormal basis $\{e_1, e_2, \ldots, e_n\}$ such that $\operatorname{span}(e_1, \ldots, e_k) =$ $\operatorname{span}(v_1, \ldots, v_k)$ for all k.

Algorithm:

Define $u_1 = v_1$, and then recursively

$$u_k = v_k - \sum_{j=1}^{k-1} \frac{\langle v_k, u_j \rangle}{\langle u_j, u_j \rangle} u_j, \quad \text{for } k = 2, \dots, n.$$

Then define

$$e_k = \frac{u_k}{\|u_k\|}, \quad \text{for } k = 1, \dots, n.$$

Output: $\{e_1, \ldots, e_n\}$ is an orthonormal basis of V. **Properties:**

• Each e_k is orthogonal to e_1, \ldots, e_{k-1} .

• $\langle e_i, e_j \rangle = \delta_{ij}.$

• The process is numerically unstable in floating-point arithmetic; modified Gram–Schmidt can be used in practice.

Orthogonal Complements and Direct Sum Decomposition

Let V be a finite-dimensional inner product space over \mathbb{R} , and let $U \subseteq V$ be a subspace.

Definition (Orthogonal Complement): The *orthogonal complement* of U is the subspace

$$U^{\perp} := \{ v \in V : \langle v, u \rangle = 0 \text{ for all } u \in U \}.$$

Proposition:

$$V = U \oplus U^{\perp},$$

that is, every vector $v \in V$ can be uniquely written as v = u + w with $u \in U$ and $w \in U^{\perp}$.

Proof Sketch:

- Choose a basis $\{u_1, \ldots, u_k\}$ for U.
- Extend it to a basis $\{v_1, \ldots, v_n\}$ for V.
- Apply Gram-Schmidt to obtain an orthonormal basis $\{e_1, \ldots, e_n\}$ of V, where $\{e_1, \ldots, e_k\}$ spans U.
- Then $\{e_{k+1}, \ldots, e_n\}$ spans U^{\perp} .
- Every v ∈ V can then be written as v = ∑ⁿ_{i=1}⟨v,e_i⟩e_i with components in U and U[⊥].
 Corollary:

$$\dim V = \dim U + \dim U^{\perp}.$$

Orthogonal Projection: The map $\pi_U : V \to U$ defined by

$$\pi_U(v) = \sum_{i=1}^k \langle v, e_i \rangle e_i$$
 where $\{e_1, \dots, e_k\}$ is an orthonormal

is the orthogonal projection onto U along U^{\perp} .

Characterization:

$$v - \pi_U(v) \in U^{\perp}$$
, and $\pi_U(v) \in U$.

Hence $v = \pi_U(v) + (v - \pi_U(v))$ is the unique decomposition of v into U and U^{\perp} components.

Orthogonal Projections

Let V be a finite-dimensional inner product space over \mathbb{R} , and let $U \subseteq V$ be a subspace with orthonormal basis $\{e_1, \ldots, e_k\}$.

Definition (Orthogonal Projection): The orthogonal projection of $v \in V$ onto U is

$$\pi_U(v) := \sum_{i=1}^k \langle v, e_i \rangle e_i$$

Properties:

- $\pi_U(v) \in U$, and $v \pi_U(v) \in U^{\perp}$.
- π_U is linear: $\pi_U(\lambda v + \mu w) = \lambda \pi_U(v) + \mu \pi_U(w)$.
- π_U is idempotent: $\pi_U(\pi_U(v)) = \pi_U(v)$.
- π_U is self-adjoint: $\langle \pi_U(v), w \rangle = \langle v, \pi_U(w) \rangle$.

Matrix Form: Let E be the $n \times k$ matrix whose columns are the orthonormal vectors e_1, \ldots, e_k . Then the projection matrix is

$$P = EE^T$$

and for $v \in \mathbb{R}^n$ viewed as a column vector,

$$\pi_U(v) = Pv.$$

Application (Least Squares): Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, the least squares solution to $Ax \approx b$ is the x minimizing $||Ax - b||^2$, given by solving

$$A^T A x = A^T b,$$

which corresponds to projecting b orthogonally onto Im(A).

Simultaneous Diagonalisation

Theorem (Simultaneous Diagonalisation): Let V be a finite-dimensional inner product space over \mathbb{R} . Suppose $\alpha, \beta \in \mathcal{L}(V)$ are self-adjoint and commute: $\alpha\beta = \beta\alpha$. Then α and β are simultaneously diagonalizable: there exists an orthonormal basis of V consisting of vectors that are eigenvectors for both α and β .

More generally: If $\{\alpha_i\}_{i=1}^k$ is a commuting family of self-adjoint operators on V, then there exists an orthonormal basis of V consisting of simultaneous eigenvectors for all α_i .

Proof Sketch:

- Since each α_i is self-adjoint, it is diagonalizable with an orthonormal basis of eigenvectors.
- Because the operators commute, the eigenspaces of one are invariant under the others.

• Proceed inductively: diagonalize α_1 to get decomposition basis of \mathcal{O} thogonal eigenspaces.

- Restrict each α_i to these eigenspaces; since they commute and are self-adjoint, repeat the process.
- The final basis simultaneously diagonalizes all α_i .

Application: Let A, B be real symmetric $n \times n$ matrices such that AB = BA. Then there exists an orthogonal matrix Q such that

$$Q^T A Q = D_A, \quad Q^T B Q = D_B$$

with both D_A and D_B diagonal.

Remark: Commuting alone does not imply simultaneous diagonalisation unless the matrices are also diagonalizable — which self-adjointness guarantees in the real inner product case.

Matrix Similarity, Commutators, and Centralisers

Definition (Similarity): Two matrices $A, B \in Mat_n(F)$ are *similar* if there exists an invertible matrix $P \in GL_n(F)$ such that

$$B = P^{-1}AP.$$

Similarity preserves many algebraic properties: determinant, trace, characteristic polynomial, eigenvalues, minimal polynomial, and rank.

Definition (Commutator): Given $A, B \in Mat_n(F)$, their *commutator* is

$$[A, B] := AB - BA$$

We say A and B commute if [A, B] = 0.

 $A \sim B$, then A and B represent the same linear operator with respect to different bases.

Definition (Centraliser): Let $A \in Mat_n(F)$. The set

$$\{B \in \operatorname{Mat}_n(F) : AB = BA\}$$

is a subspace of $Mat_n(F)$ called the *centraliser* of A (though not named this in our course). It consists of all matrices that commute with A.

Examples:

- If $A = \lambda I_n$ for some scalar λ , then AB = BA for all B.
- If A is diagonal, then B commutes with A if and only if B is diagonal (in general, if A has distinct eigenvalues).

Application (Simultaneous Diagonalisation): If A is diagonalizable and B commutes with A, then B preserves the eigenspaces of A. This often enables simultaneous diagonalisation.

Exercise: Show that the set of all B commuting with a given A forms a vector space, and compute its dimension in a few concrete examples.

Fitting's Lemma and Image–Kernel Decomposition

Fitting's Lemma: Let V be a finite-dimensional vector space and let $\alpha \in \mathcal{L}(V)$. Then there exists an integer $m \geq 0$ such that

$$V = \ker(\alpha^m) \oplus \operatorname{Im}(\alpha^m).$$

Details:

- The sequence ker(α^k) is increasing, and Im(α^k) is decreasing.
- Since V is finite-dimensional, both sequences stabilize: there exists m such that

$$\ker(\alpha^m) = \ker(\alpha^{m+1}), \quad \operatorname{Im}(\alpha^m) = \operatorname{Im}(\alpha^{m+1}).$$

- Then $V = \ker(\alpha^m) \oplus \operatorname{Im}(\alpha^m)$. Interpretation:
- ker(α^m) is the generalized null space of α .
- $\operatorname{Im}(\alpha^m)$ is the stable image.
- The restriction $\alpha|_{\operatorname{Im}(\alpha^m)}$ is injective.
- The restriction $\alpha|_{\ker(\alpha^m)}$ is nilpotent.

Remarks:

- The decomposition is not α -invariant in general.
- In the case where α is a linear operator on V and its minimal polynomial splits into relatively prime factors, Fitting's Lemma is used to decompose V into primary components.

Example: Let
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
. Then $A^2 = 0$, so $\ker(A^2) = \mathbb{R}^2$, $\operatorname{Im}(A^2) = \{0\}$.

So $V = \ker(A^2) \oplus \operatorname{Im}(A^2)$ trivially.

Addendum: Connection to Primary Decomposition and Jordan Form

Primary Decomposition Theorem: Let $\alpha \in \mathcal{L}(V)$ have minimal polynomial

$$m_{\alpha}(t) = p_1(t)^{r_1} \cdots p_k(t)^{r_k}$$

Observation: Similarity is an equivalence relation. If where the p_i are distinct monic irreducible polynomials over F. Then

$$V = \bigoplus_{i=1}^{k} V_i$$
, where $V_i := \ker(p_i(\alpha)^{r_i})$.

Each V_i is α -invariant, and $\alpha|_{V_i}$ has minimal polynomial $p_i^{r_i}$.

Use of Fitting's Lemma: Within each V_i , we apply Fitting's Lemma to write

$$V_i = \ker(\alpha|_{V_i}^m) \oplus \operatorname{Im}(\alpha|_{V_i}^m),$$

giving a decomposition into a nilpotent part and an invertible (or semi-simple) part.

Application to Jordan Form: For α with minimal polynomial splitting into linear factors over F (e.g. over \mathbb{C}), the primary decomposition groups generalized eigenspaces:

$$V = \bigoplus_{\lambda} \ker((\alpha - \lambda I)^r).$$

Fitting's Lemma provides the basis for constructing Jordan blocks: each ker $((\alpha - \lambda I)^r)$ is where the nilpotent action lives, layered by powers of $(\alpha - \lambda I)$.

Summary: Fitting's Lemma gives the internal structure of each generalized eigenspace, forming the backbone of the Jordan canonical form construction.

Trace Identity: tr(AB) = tr(BA)

tr(AB) = tr(BA)

Theorem: Let $A \in Mat_{n \times m}(F)$ and $B \in Mat_{m \times n}(F)$. Then

$$\operatorname{tr}(AB) = \operatorname{tr}(BA).$$

Proof Sketch: Write out the trace:

$$tr(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{m} A_{ij} B_{ji}$$

$$tr(BA) = \sum_{j=1}^{m} (BA)_{jj} = \sum_{j=1}^{m} \sum_{i=1}^{n} B_{ji} A_{ij}$$

The two sums are equal by rearranging the order of summation.

Remarks:

- This holds even when AB and BA are not the same size (e.g. AB is $n \times n$, BA is $m \times m$).
- In particular, if $A, B \in Mat_n(F)$ then tr(AB) = tr(BA).
- Generalization: For any $k \in \mathbb{N}$, $tr(A_1A_2 \cdots A_k)$ is invariant under cyclic permutations.

Commutators and the Kernel of Trace

Fact: The set of all commutators [A, B] := AB - BA in $Mat_n(F)$ spans the kernel of the trace map:

$$\ker(\operatorname{tr}) = \operatorname{span}\{AB - BA : A, B \in \operatorname{Mat}_n(F)\}.$$

Proof Sketch:

- For any $A, B \in \operatorname{Mat}_n(F)$, we have $\operatorname{tr}(AB BA) = \operatorname{tr}(AB) \operatorname{tr}(BA) = 0$.
- So every commutator lies in ker(tr).
- Conversely, ker(tr) is a hyperplane in $Mat_n(F)$ (codimension 1), and it can be shown that the span of commutators is already $n^2 1$ -dimensional, hence equals the kernel.

Interpretation: The trace map tr : $Mat_n(F) \to F$ is surjective with 1-dimensional image, and the space of tracezero matrices is exactly the space generated by commutators.

Example:

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad AB - BA = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

This matrix has trace zero and lies in the span of commutators.

Uniqueness of the Trace Function

Theorem: Let $f : \operatorname{Mat}_n(F) \to F$ be a linear map such that

$$f(AB) = f(BA)$$
 for all $A, B \in Mat_n(F)$.

Then f is a scalar multiple of the trace: there exists $c \in F$ such that

$$f(A) = c \cdot \operatorname{tr}(A)$$
 for all A .

Proof: Let $E_{ij} \in \operatorname{Mat}_n(F)$ denote the standard matrix units: $(E_{ij})_{kl} = \delta_{ik} \delta_{jl}$.

1. For $i \neq j$, compute:

$$f(E_{ij}) = f(E_{ii}E_{ij}) = f(E_{ij}E_{ii}) = f(E_{ij}),$$

and

$$f(E_{ij}) = f(E_{ik}E_{kj}) = f(E_{kj}E_{ik}) = 0,$$

for $k \neq i, j$ — and more generally, we can construct A, B so that $AB = E_{ij}$ but BA = 0 if $i \neq j$, forcing $f(E_{ij}) = 0$.

So all off-diagonal entries vanish under f:

$$f(E_{ij}) = 0 \quad \text{for } i \neq j.$$

2. For diagonal entries E_{ii} and E_{jj} :

$$f(E_{ii}) = f(E_{ij}E_{ji}) = f(E_{ji}E_{ij}) = f(E_{jj}),$$

so all $f(E_{ii})$ are equal. Let $c := f(E_{11})$.

Then for any $A = \sum_{i,j} a_{ij} E_{ij}$, we have:

$$f(A) = \sum_{i=1}^{n} a_{ii} f(E_{ii}) = c \sum_{i=1}^{n} a_{ii} = c \cdot \operatorname{tr}(A).$$

Corollary: The trace map is the unique linear map $f : \operatorname{Mat}_n(F) \to F$ satisfying

$$f(AB) = f(BA)$$
 and $f(I) = n$.

Proof: From the above, $f = c \cdot \text{tr}$, and $f(I) = c \cdot \text{tr}(I) = cn$. So to force f(I) = n, we must have c = 1, hence f = tr.

Useful Problem-Solving Identities

Polarisation Trick (Hermitian/Symmetric Forms):

Let ψ be a symmetric bilinear form on a complex vector space. Then

$$\psi(u,v) = \frac{1}{n} \sum_{k=1}^{n} \zeta^{k} \, \psi(u + \zeta^{k} v, u + \zeta^{k} v), \quad \text{where } \zeta = e^{2\pi i/n}, \, n \ge 2.$$

Averaging isolates the cross-term via orthogonality of roots of unity.

Cyclic Trace Identity:

$$\operatorname{tr}(A_1 A_2 \cdots A_k) = \operatorname{tr}(A_k A_1 \cdots A_{k-1}).$$

Useful when trace appears in a product — allows cyclic rearrangement.

Rank–Nullity Theorem: For any $\alpha \in \mathcal{L}(V)$:

 $\dim V = \dim \ker \alpha + \dim \operatorname{Im} \alpha.$

Diagonalisation by Spectral Theorem: For real symmetric A, there exists $Q \in O(n)$ such that:

$$Q^T A Q = D$$
 (diagonal).

Projection Formula: Let $\{e_1, \ldots, e_k\}$ be an orthonormal basis for subspace U. Then the orthogonal projection onto U is:

$$_{U}(v) = \sum_{i=1}^{k} \langle v, e_i \rangle e_i.$$

Minimal Polynomial Identity: If $m_{\alpha}(t)$ is the minimal polynomial of $\alpha \in \mathcal{L}(V)$, then:

 $m_{\alpha}(\alpha) = 0$, and m_{α} is the monic polynomial of least degree with the

Schur Decomposition (over \mathbb{C}): Any $A \in Mat_n(\mathbb{C})$ is unitarily triangularizable:

 $A = UTU^*$, with $U \in U(n)$, T upper triangular.

Commutator Trace Identity:

π

$$\operatorname{tr}([A, B]) = \operatorname{tr}(AB - BA) = 0.$$

Double Commutator Identity (Lie-type trick):

$$[A, [A, B]] = A^2B - 2ABA + BA^2.$$

Useful in induction or polynomial identity manipulation.

Gauss's Lemma and Eisenstein's Criterion (General Form)

Let R be a unique factorisation domain (UFD), with field of fractions F. Define the *content* of $f \in R[x]$ as cont(f) = gcd of its coefficients. Say f is *primitive* if cont(f) = 1.

Gauss I:
$$\operatorname{cont}(fg) = \operatorname{cont}(f) \cdot \operatorname{cont}(g)$$

Proof: Let $f = c \cdot f'$, $g = d \cdot g'$ where f', g' are primitive and c = cont(f), d = cont(g). Then

$$fg = cd \cdot f'g'.$$

We prove f'g' is primitive.

Suppose p is an irreducible in R dividing all coefficients of f'g'. Then reduce modulo (p) to get $\overline{f'} \cdot \overline{g'} = 0$ in (R/(p))[x]. But since R/(p) is an integral domain (as R is a UFD), this implies $\overline{f'} = 0$ or $\overline{g'} = 0$, i.e., all coefficients of f' or g' are divisible by p — contradicting primitivity.

Hence f'g' is primitive, and $\operatorname{cont}(fg) = cd = \operatorname{cont}(f)\operatorname{cont}(g)$.

Gauss II: Primitive Irreducible in $R[x] \Rightarrow$ Irreducible in F[x]

Proof: Let $f \in R[x]$ be primitive and irreducible in R[x]. Suppose f = gh in F[x]. Then write $g = a^{-1}g'$, $h = b^{-1}h'$ with $g', h' \in R[x]$, and $a, b \in R \setminus \{0\}$.

Then

$$f = \frac{1}{ab}g'h' \Rightarrow abf = g'h'.$$

Take contents: $\operatorname{cont}(abf) = ab$ (since f primitive), and $\operatorname{cont}(g') \cdot \operatorname{cont}(h') = ab$ by Gauss I. Set

$$g'' := \operatorname{cont}(g')^{-1}g', \quad h'' := \operatorname{cont}(h')^{-1}h'$$

so g'', h'' are primitive, and

$$f = g''h'' \in R[x].$$

Then f is factored into non-unit elements of R[x], contradicting irreducibility.

Gauss III: Primitive \Rightarrow Irreducible in $F[x] \Leftrightarrow$ Irreducible in R[x]

Proof: (\Rightarrow) is Gauss II.

(\Leftarrow): Let f be primitive and irreducible in F[x]. Suppose f = gh in R[x]. Then f is reducible in F[x], contradiction.

Eisenstein's Criterion

Let $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$, and let $p \in R$ be an irreducible element such that:

- $p \mid a_0, \ldots, a_{n-1},$
- $p \nmid a_n$,
- $p^2 \nmid a_0$.

Then f is irreducible in F[x], where F is the field of fractions of R.

Proof: Suppose f = gh in R[x] with deg g, deg $h < \deg f$.

Let
$$g = \sum b_i x^i$$
, $h = \sum c_j x^j$ with degrees $r, s, r + s = n$.
Then

 $a_0 = b_0 c_0.$

But $p \mid a_0$ implies $p \mid b_0$ or $p \mid c_0$.

WLOG $p \mid b_0$. Let k be the least index such that $p \nmid b_k$. Such k exists since $p \nmid a_n$.

Consider the coefficient $a_k = \sum_{i+j=k} b_i c_j$. All b_i with i < k satisfy $p \mid b_i$, and b_k is the first with $p \nmid b_k$. Since $p \mid a_k$ by assumption, the sum

$$a_k = b_k c_0 + (\text{terms divisible by } p)$$

implies $p \mid b_k c_0 \Rightarrow p \mid c_0$ (since $p \nmid b_k$), so $p \mid b_0$ and $p \mid c_0$.

Hence $p^2 \mid a_0 = b_0 c_0$, contradicting the assumption that $p^2 \nmid a_0$.

Therefore, f is irreducible in R[x] and hence in F[x] by Gauss II.

Sylow's Theorems

Let G be a finite group, and let $|G| = p^n m$, where p is prime and $p \nmid m$.

First Sylow Theorem

Statement: G has a subgroup of order p^k for every $0 \le k \le n$. In particular, there exists a subgroup of order p^n (a Sylow *p*-subgroup).

Proof (Sketch for maximal k = n): Act on the set X of subsets of G of size p^n by left multiplication. Then count the number of such subsets and show that some stabiliser must have order divisible by p^n . Alternatively, induct on |G| using Cauchy's theorem and normalisers.

Second Sylow Theorem

Statement: Any two Sylow p-subgroups of G are conjugate. Moreover, every p-subgroup is contained in a Sylow p-subgroup.

Proof: Let P be a Sylow p-subgroup and let Q be any p-subgroup. Consider the action of Q on the left coset space G/P by left multiplication. Then |G/P| = m and $p \nmid m$, so the number of fixed points is congruent to $|G/P| \mod p$.

By the orbit-counting lemma, some fixed point exists — i.e., some gP is fixed by Q, which implies $Q \leq gPg^{-1}$.

Third Sylow Theorem

Statement: Let n_p be the number of Sylow *p*-subgroups of *G*. Then:

$$n_p \equiv 1 \pmod{p}, \quad n_p \mid m.$$

Proof: Let G act on the set S of Sylow p-subgroups by conjugation. Then the orbit of any Sylow p-subgroup P under this action has size equal to $|G: N_G(P)|$.

But $P \leq N_G(P)$, and $|P| = p^n$, so $p \nmid |G : N_G(P)|$. Thus each orbit has size not divisible by p.

Now apply orbit counting or consider the conjugation action directly: by counting fixed points, we obtain $n_p \equiv 1 \mod p$.

Smith Normal Form and Classification of Abelian Groups

Let R be a PID (typically $R = \mathbb{Z}$), and let M be a finitely generated R-module.

Smith Normal Form (SNF)

Theorem: Let A be an $m \times n$ matrix with entries in a PID R. Then there exist invertible matrices $P \in \operatorname{GL}_m(R)$ and $Q \in \operatorname{GL}_n(R)$ such that

$$PAQ = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_r \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix},$$

with $d_1 \mid d_2 \mid \cdots \mid d_r$ in R.

Proof Outline: This is done by performing elementary row and column operations to diagonalise A, clearing lower entries via division (possible in PIDs), using the Euclidean algorithm to enforce divisibility conditions.

Interpretation: If A is the matrix of a homomorphism $\mathbb{R}^n \to \mathbb{R}^m$, then the cokernel

$$\operatorname{coker} A \cong \bigoplus_{i=1}^r R/(d_i R) \oplus R^{m-r}$$

Structure Theorem for Finitely Generated Abelian Groups

Let G be a finitely generated abelian group. Then:

Theorem (Invariant Factor Form): There exists an isomorphism

$$G \cong \mathbb{Z}^r \oplus \mathbb{Z}/d_1 \oplus \cdots \oplus \mathbb{Z}/d_k$$

with $d_1 \mid d_2 \mid \cdots \mid d_k$ and $d_i \geq 2$.

Theorem (Elementary Divisor Form): Alternatively,

$$G \cong \mathbb{Z}^r \oplus \mathbb{Z}/p_1^{e_1} \oplus \cdots \oplus \mathbb{Z}/p_n^{e_n}$$

with p_i prime and exponents $e_i \ge 1$.

Proof Idea: Regard G as a module over \mathbb{Z} , present it as $\mathbb{Z}^n/\operatorname{im}(A)$ for some integer matrix A, and apply Smith Normal Form to A. The invariant factors d_i are the diagonal entries in SNF.

Corollaries

- Every finite abelian group is isomorphic to a finite direct sum of cyclic groups of prime power order.
- The invariant factors are unique up to isomorphism of G.
- The torsion subgroup of G is isomorphic to the torsion part $\bigoplus \mathbb{Z}/d_i$.

Structure Theorem for Finitely Generated Modules over a PID

Let R be a principal ideal domain (in our case, typically a Euclidean domain), and let M be a finitely generated R- module.

Statement (Invariant Factor Form)

There exists an isomorphism

$$M \cong R^r \oplus R/(d_1) \oplus R/(d_2) \oplus \cdots \oplus R/(d_k),$$

where $d_i \in R$ are nonzero and satisfy $d_1 \mid d_2 \mid \cdots \mid d_k$. The d_i are called the *invariant factors* of M, and r is the rank of the free part of M.

Alternate Form (Elementary Divisors)

Equivalently, M decomposes as

$$M \cong R^r \oplus \bigoplus_{i=1}^n R/(p_i^{e_i}),$$

where each p_i is irreducible (typically prime) in R.

Proof Sketch (Euclidean Domain Version)

1. Present M as a quotient: Let M be generated by n elements, so there exists a surjective map:

$$\phi: \mathbb{R}^n \twoheadrightarrow M.$$

Then $M \cong \mathbb{R}^n / \ker \phi$.

2. Represent ϕ by an $m \times n$ matrix A with entries in R, corresponding to a presentation of M.

3. Use elementary row and column operations (invertible over R) to bring A into Smith Normal Form:

$$PAQ = diag(d_1, d_2, \dots, d_k, 0, \dots, 0), \text{ with } d_1 \mid d_2 \mid \dots \mid d_k.$$

4. Then $M \cong R/(d_1) \oplus \cdots \oplus R/(d_k) \oplus R^{n-k}$.

5. The free rank r := n - k is uniquely determined as $\dim_R(M \otimes_R F)$ for $F = \operatorname{Frac}(R)$.

Remarks

- The d_i are uniquely determined up to associates and satisfy $d_1 \mid d_2 \mid \cdots \mid d_k$. - The decomposition reflects torsion and free parts:

$$M_{\rm tor} = \bigoplus R/(d_i), \quad M_{\rm free} = R^r$$

- This generalises the classification of finitely generated abelian groups when $R = \mathbb{Z}$.

Hilbert's Basis Theorem

Theorem: Let R be a Noetherian ring. Then the polynomial ring R[x] is also Noetherian.

Proof: Let $I \subseteq R[x]$ be an ideal. We aim to show that I is finitely generated.

For each $n \ge 0$, define

$$I_n := \{a \in R \mid \text{there exists } f(x) \in I \}$$

with $\deg f = n$ and leading coefficient a}.

That is, I_n consists of all possible leading coefficients of degree-n polynomials in I.

Each I_n is an ideal of R. Since R is Noetherian, the ascending chain

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots$$

stabilises. That is, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $I_n = I_N$.

Now, for each $0 \le n \le N$, choose finitely many polynomials $f_{n,1}, \ldots, f_{n,r_n} \in I$ of degree n such that their leading coefficients generate I_n .

Let S be the finite set of all such polynomials across all $n \leq N$. We claim that S generates I.

Let $f \in I$ be arbitrary. We induct on the degree $d = \deg f$.

If d > N, then the leading coefficient a of f lies in $I_d = I_N$. So $a = \sum_i r_i a_i$ where each a_i is the leading coefficient of some $f_{N,j}$.

Then define

$$g := \sum_{i} r_i x^{d-N} f_{N,j_i} \in \langle S \rangle.$$

Note that g and f have the same degree and leading coefficient, so f - g has degree $\langle d \rangle$ and lies in I. By induction, $f - g \in \langle S \rangle$, so $f \in \langle S \rangle$.

If $d \leq N$, the same argument applies using $f_{d,j}$.

Therefore, I is generated by S and R[x] is Noetherian.

Noetherian Rings and Modules

Definition: A ring R is *Noetherian* if every ascending chain of ideals

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$$

stabilises; i.e., there exists n such that $I_k = I_n$ for all $k \ge n$.

Equivalently, R is Noetherian if every ideal of R is finitely generated.

Noetherian Modules

Let M be an R-module. Then M is called *Noetherian* if every submodule is finitely generated. This is equivalent to every ascending chain of submodules of M stabilising.

Examples:

- \mathbb{Z} is Noetherian, since every ideal is of the form (n).
- A field F is trivially Noetherian.
- $\mathbb{Z}[x]$ is Noetherian by Hilbert's Basis Theorem.

Standard Lemmas and Properties

Lemma (Submodule Lemma): If M is a Noetherian R-module and $N \leq M$, then N is Noetherian.

Lemma (Quotient Lemma): If M is Noetherian and $N \leq M$, then M/N is Noetherian.

Lemma (Extension Lemma): Let $0 \rightarrow N \rightarrow M \rightarrow P \rightarrow 0$ be a short exact sequence of *R*-modules. Then:

M Noetherian $\iff N, P$ Noetherian.

Corollary: If R is Noetherian and M is a finitely generated R-module, then M is Noetherian.

Proof Sketch: Let $M = Rm_1 + \cdots + Rm_n$ be generated by *n* elements. Define a surjective map:

$$\phi: \mathbb{R}^n \to M, \quad (r_1, \dots, r_n) \mapsto \sum r_i m_i.$$

Then $M \cong \mathbb{R}^n / \ker \phi$, and since \mathbb{R}^n is Noetherian and quotients of Noetherian modules are Noetherian, M is Noetherian.

Important Consequences

- Every ideal in a Noetherian ring is finitely generated.
- Every submodule of a finitely generated module over a Noetherian ring is finitely generated.
- Hilbert's Basis Theorem: If R is Noetherian, then R[x] is Noetherian.
- Every finitely generated algebra over a Noetherian ring is Noetherian.

Theorems on PIDs and UFDs

Definitions

- A principal ideal domain (PID) is an integral domain in which every ideal is of the form (a) for some $a \in R$.
- A *unique factorisation domain* (UFD) is an integral domain in which every nonzero non-unit can be written as a product of irreducibles, uniquely up to unit and order.

Theorems on PIDs

- Every PID is Noetherian.
- Every PID is a UFD.
- Every finitely generated torsion-free module over a PID is free.
- Every submodule of a free module over a PID is free (in the finitely generated case).
- Let R be a PID, and M a finitely generated R-module. Then:

$$M \cong R^r \oplus R/(d_1) \oplus \cdots \oplus R/(d_k)$$
, with $d_1 \mid \cdots \mid d_k$.

Theorems on UFDs

- Every PID is a UFD, but not every UFD is a PID (e.g. k[x, y]).
- In a UFD, irreducibles are primes (i.e. $p \mid ab \Rightarrow p \mid a$ or $p \mid b$).

- In a UFD, GCDs exist and can be expressed as linear combinations in special cases (e.g. Euclidean domains).
- If R is a UFD, then so is R[x].
- Gauss's Lemma holds: if R is a UFD, then R[x] is a UFD.
- In a UFD, any polynomial in R[x] is reducible in R[x] if and only if it is reducible in Frac(R)[x], provided it is primitive.

Consequences and Comparisons

- Euclidean \Rightarrow PID \Rightarrow UFD \Rightarrow integral domain.
- \mathbb{Z} , k[x] are PIDs; k[x, y] is a UFD but not a PID.
- The structure theorem for finitely generated modules applies over PIDs (but fails in general UFDs).
- Gauss's Lemma and Eisenstein's Criterion require UFD assumptions (or PID for cleaner argument).

Rational Canonical Form via the Structure Theorem

Let V be a finite-dimensional vector space over a field k, and let $T: V \to V$ be a linear map.

Idea: Treat V as a module over k[x] via:

 $f(x)\cdot v:=f(T)(v),\quad \text{for }f(x)\in k[x],\ v\in V.$

Then V becomes a finitely generated k[x]-module. Since k[x] is a PID, the structure theorem applies.

Structure Theorem Application

There exists an isomorphism of k[x]-modules:

$$V \cong \bigoplus_{i=1}^{r} k[x]/(f_i(x)), \quad \text{where } f_i \mid f_{i+1}.$$

The $f_i(x)$ are the *invariant factors* of T, determined uniquely up to associates. The largest invariant factor is the minimal polynomial of T.

Matrix Form

With respect to a suitable basis, the matrix of T is block-diagonal:

$$\operatorname{RCF}(T) = \begin{pmatrix} C(f_1) & & \\ & \ddots & \\ & & C(f_r) \end{pmatrix},$$

where C(f) is the companion matrix of f(x).

Companion matrix: If $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$, then

$$C(f) = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}.$$

Uniqueness and Minimal Polynomial

- The invariant factors $f_i(x)$ are uniquely determined by T.
- The product $\prod f_i(x) = \chi_T(x)$ is the characteristic polynomial of T.
- The largest invariant factor equals the minimal polynomial of T.

Summary

- The Rational Canonical Form is unique up to similarity over k.
- It provides a complete invariant for similarity classes over arbitrary fields.
- The module-theoretic view avoids eigenvalues and diagonalisation.

Core Definitions (GRM)

- A group (G, \cdot) is a set with an associative binary operation, an identity element e, and inverses: $\forall g \in G, \exists g^{-1} \in G$ such that $gg^{-1} = e$.
- A ring $(R, +, \cdot)$ is a set with two operations: (R, +) is an abelian group, multiplication is associative, and distributive over addition.
- A ring is a **domain** if it is commutative with 1 ≠ 0 and has no zero divisors.
- A **field** is a commutative ring in which every nonzero element has a multiplicative inverse.
- An ideal $I \subseteq R$ is a subset such that I is an additive subgroup and $r \in R$, $a \in I \Rightarrow ra \in I$.
- A module over a ring R is an abelian group M with a scalar multiplication $R \times M \to M$ satisfying:

 $r(m+n) = rm+rn, \quad (r+s)m = rm+sm, \quad (rs)m = r(sm), \quad 1_Rm$

- A module is **Noetherian** if every submodule is finitely generated (equivalently, satisfies the ascending chain condition).
- A principal ideal domain (PID) is an integral domain in which every ideal is of the form (a) for some $a \in R$.
- A unique factorisation domain (UFD) is a domain where every nonzero non-unit factors into irreducibles, uniquely up to unit and order.
- A finitely generated module is a module M with a finite generating set: $\exists m_1, \ldots, m_n \in M$ such that $M = \sum Rm_i$.
- A linear operator $T: V \to V$ is **diagonalisable** if V has a basis of eigenvectors of T.
- The **minimal polynomial** of T is the monic polynomial m(x) of least degree such that m(T) = 0.

Contraction Mapping Theorem (Banach Fixed Point Theorem)

Theorem: Let (X, d) be a complete metric space, and let $f: X \to X$ be a contraction; that is, there exists 0 < c < 1 such that

$$d(f(x), f(y)) \le c d(x, y), \quad \forall x, y \in X.$$

Then:

- 1. f has a unique fixed point $x^* \in X$, i.e. $f(x^*) = x^*$.
- 2. For any $x_0 \in X$, the sequence defined by $x_{n+1} = f(x_n)$ converges to x^* .
- 3. Moreover, the convergence is geometric: $d(x_n, x^*) \leq \frac{c^n}{1-c}d(x_1, x_0).$

Proof:

Let $x_0 \in X$ be arbitrary and define the sequence $x_n := f(x_{n-1})$ for $n \ge 1$.

Step 1: Show (x_n) is Cauchy. We have:

$$d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1})) \le c \, d(x_n, x_{n-1}).$$

By induction:

$$d(x_{n+1}, x_n) \le c^n d(x_1, x_0).$$

Then for m > n,

$$d(x_m, x_n) \le \sum_{k=n}^{m-1} d(x_{k+1}, x_k) \le d(x_1, x_0) \sum_{k=n}^{m-1} c^k \le \frac{c^n}{1-c} d(x_1, x_0).$$

Hence (x_n) is Cauchy, and since X is complete, $x_n \to x^*$ for some $x^* \in X$.

Step 2: $f(x^*) = x^*$. Since f is continuous (eq it is Lingehitz) we

Since f is continuous (as it is Lipschitz), we have:

$$f(x^*) = f(\lim x_n) = \lim f(x_n) = \lim x_{n+1} = x^*.$$

Step 3: Uniqueness.

If f(y) = y and f(z) = z, then:

$$d(y,z) = d(f(y), f(z)) \le c \, d(y,z),$$

implying $(1-c)d(y,z) \le 0 \Rightarrow y = z$.

Application: Iteration for Solving Equations

Given a recurrence or functional equation of the form x = f(x), one can apply the Banach Fixed Point Theorem to prove: - Existence and uniqueness of a solution - Convergence of the iteration $x_{n+1} = f(x_n)$ - Geometric rate of convergence

Example: Solve $x = \cos x$.

Let $f(x) = \cos x$ on [0, 1] with the usual metric. Then f is a contraction:

$$|f'(x)| = |\sin x| \le \sin 1 < 1.$$

Inverse Function Theorem

Definitions:

• A function $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x \in U$ if there exists a linear map $Df(x): \mathbb{R}^n \to \mathbb{R}^m$ such that:

$$\lim_{x \to 0} \frac{\|f(x+h) - f(x) - Df(x)(h)\|}{\|h\|} = 0.$$

• The matrix of Df(x) in standard coordinates is the **Ja-cobian matrix**:

$$J_f(x) = \left(\frac{\partial f_i}{\partial x_j}(x)\right)_{1 \le i \le m, 1 \le j \le n}$$

• A function is of class C^k if it is k times continuously differentiable.

Theorem (Inverse Function Theorem): Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 function on an open set U, and let $a \in U$. Suppose Df(a) is invertible (i.e. det $Df(a) \neq 0$). Then:

1. There exists an open neighbourhood V of a and an open neighbourhood W of f(a) such that

 $f: V \to W$ is a bijection, and $f^{-1}: W \to V$ is C^1 .

2. For all $y \in W$, the derivative of the inverse is given by:

$$D(f^{-1})(y) = Df(f^{-1}(y))^{-1}.$$

Proof Outline:

Let T = Df(a), which is invertible. Define g(x) := f(x) - T(x - a). Then g(a) = f(a) and Dg(a) = 0. We rewrite f(x) near a as:

$$f(x) = f(a) + T(x-a) + R(x)$$
, with $\frac{\|R(x)\|}{\|x-a\|} \to 0$ as $x \to a$.

Then define the map:

$$\Phi(x) := x - T^{-1}(f(x) - f(a)).$$

This map has a fixed point at a, and one shows that Φ is a contraction near a. By the Contraction Mapping Theorem, the fixed point is unique and depends continuously on the image value — constructing f^{-1} and proving differentiability.

Example Application:

Let $f(x,y) = (x + y + \sin(xy), x - y)$. Compute Df(0,0):

$$Df(0,0) = \begin{pmatrix} 1+0 & 1+0 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \det = -2 \neq 0.$$

Thus, iteration converges to the unique fixed point in [0, 1]. So f is locally invertible near (0, 0) and f^{-1} is differentiable.

Addendum: Implicit Function Theorem

Theorem (Implicit Function Theorem):

Let $F : \mathbb{R}^{n+m} \to \mathbb{R}^m$ be a C^1 function, and suppose F(a,b) = 0 for some $(a,b) \in \mathbb{R}^n \times \mathbb{R}^m$.

If the Jacobian matrix

$$\left(\frac{\partial F_i}{\partial y_j}(a,b)\right)_{1\leq i,j\leq m}$$

is invertible, then there exist open neighbourhoods:

$$U \subseteq \mathbb{R}^n$$
 around $a, \quad V \subseteq \mathbb{R}^m$ around $b,$

and a unique C^1 function $g: U \to V$ such that:

$$F(x, g(x)) = 0$$
 for all $x \in U$.

Moreover, for all $x \in U$, we have:

$$Dg(x) = -\left(\frac{\partial F}{\partial y}(x,g(x))\right)^{-1} \cdot \frac{\partial F}{\partial x}(x,g(x)).$$

Interpretation: If F(x, y) = 0 implicitly defines y in terms of x, then under the above conditions, this can be solved locally as y = g(x) with g differentiable.

Example: Let $F(x, y) = x^2 + y^2 - 1$. Then F(0, 1) = 0, and

$$\frac{\partial F}{\partial y}(0,1) = 2y = 2 \neq 0.$$

So there exists a differentiable function y = g(x) near x = 0such that $x^2 + g(x)^2 = 1$ — i.e., one branch of the unit circle.

Uniform Convergence and Continuity / Integrability / Differentiability

Definition (Uniform Convergence): Let $f_n : X \to \mathbb{R}$ be a sequence of functions. We say $f_n \to f$ uniformly on X if:

Theorems:

- Continuity Preserved: If each f_n is continuous on a metric space X, and $f_n \to f$ uniformly, then f is continuous.
- Integrability Preserved: If $f_n \in L^1[a, b]$, and $f_n \to f$ uniformly, then:

$$f \in L^1[a, b]$$
, and $\int_a^b f_n \to \int_a^b f$.

- Differentiability Not Preserved: Even if each f_n is differentiable, and $f_n \to f$ uniformly, the limit may not be differentiable. However, if $f'_n \rightarrow g$ uniformly and $f_n(x_0) \to f(x_0)$, then $f_n \to f$ uniformly and f' = g.
- Boundedness Preserved: Uniform limits of bounded functions are bounded.

Function Spaces

Let $C_0(\mathbb{R}^d)$ denote the space of continuous functions f: $\mathbb{R}^d \to \mathbb{R}$ that vanish at infinity:

 $\forall \varepsilon > 0, \exists K \subset \mathbb{R}^d$ compact such that $|f(x)| < \varepsilon$ for all $x \notin K$.

Theorem: $C_0(\mathbb{R}^d)$, with the sup norm $||f||_{\infty} =$ $\sup_{x \in \mathbb{R}^d} |f(x)|$, is a complete metric space.

Proof Sketch: Let $f_n \in C_0(\mathbb{R}^d)$ be a Cauchy sequence in $\|\cdot\|_{\infty}$. Then $f_n \to f$ uniformly, and hence $f \in C_b(\mathbb{R}^d)$. One checks that $f \in C_0(\mathbb{R}^d)$ using the ϵ -K definition above, since uniform convergence preserves vanishing at infinity.

Connectedness and Path Connectedness

Definition (Connectedness): A topological space X is connected if there do not exist disjoint non-empty open sets $U, V \subseteq X$ such that:

$$X = U \cup V.$$

Definition (Path Connectedness): A topological space X is path connected if for all $x, y \in X$, there exists a continuous map:

$$\gamma: [0,1] \to X$$
 with $\gamma(0) = x, \ \gamma(1) = y.$

Theorems and Proofs

Theorem: The continuous image of a connected space is connected.

Proof: Let $f: X \to Y$ be continuous and X connected. Suppose $f(X) = U \cup V$, where $U, V \subseteq Y$ are disjoint nonempty open. Then $f^{-1}(U), f^{-1}(V)$ are open, disjoint, cover X, and non-empty \Rightarrow contradiction. So f(X) is connected.

Theorem: Path connected \Rightarrow connected.

Proof: Let X be path connected. Suppose $X = U \cup V$, $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n \ge N, \forall x \in X, |f_n(x) - f(x)| < \varepsilon. \text{ disjoint open non-empty.}$ Pick $x \in U, y \in V, \text{ and let } U, y \in V, v \in V,$ $\gamma: [0,1] \to X$ be a path from x to y. Then $\gamma^{-1}(U), \gamma^{-1}(V)$ are disjoint open in [0,1] and cover it, with $0 \in \gamma^{-1}(U)$, $1 \in \gamma^{-1}(V) \Rightarrow$ contradicts connectedness of [0, 1].

> **Theorem:** The closure of a connected set is connected. *Proof:* Let $A \subseteq X$ connected, and suppose $\overline{A} = U \cup V$

with U, V disjoint non-empty open in \overline{A} . Then $U \cap A, V \cap A$ are disjoint open in A, cover A, and non-empty \Rightarrow contradiction.

Theorem (Finite Intersection Criterion): If $\{A_i\}_{i \in I}$ is a collection of connected subspaces with nonempty pairwise intersections and $X = \bigcup_{i \in I} A_i$, then X is connected.

Proof: If each A_i is connected and intersects a fixed A_0 , their union is connected by induction using the fact that the union of two connected sets with non-empty intersection is connected.

Characterisation Theorem (Three-Way Equivalence)

Let X be a topological space. The following are equivalent:

- 1. X is connected.
- 2. Every continuous map $f: X \to \{0, 1\}$ is constant.
- 3. Every continuous map $f: X \to \mathbb{Z}$ is constant.

Proof:

(i) \Rightarrow (ii): Suppose $f: X \to \{0, 1\}$ is continuous. Then $f^{-1}(0), f^{-1}(1)$ are open in X, disjoint, and cover X. If both are non-empty, this is a disconnection of X, contradicting connectedness. So f is constant.

 $(\text{ii}) \Rightarrow (\text{iii})$: Let $f : X \to \mathbb{Z}$ be continuous. Then for each $n \in \mathbb{Z}$, the set $f^{-1}(n)$ is open, since \mathbb{Z} has the discrete topology.

Since $X = \bigsqcup_{n \in \mathbb{Z}} f^{-1}(n)$, and the disjoint union of open sets is open, only one of these can be non-empty by (ii). Hence f is constant.

 $\underbrace{(\mathrm{iii}) \Rightarrow (\mathrm{i}):}_{\text{optimal Suppose } X \text{ is not connected. Then there exist disjoint non-empty open sets } U, V \subseteq X \text{ such that } X = U \cup V.$ Define:

$$f(x) := \begin{cases} 0 & x \in U \\ 1 & x \in V \end{cases}$$

Then $f: X \to \mathbb{Z}$ is continuous (as \mathbb{Z} is discrete), but not constant \Rightarrow contradiction.

Therefore, X must be connected.

Compactness in Topological Spaces

Definition (Compactness): A topological space X is *compact* if every open cover has a finite subcover:

$$\forall \{U_{\alpha}\}_{\alpha \in A} \text{ open with } X = \bigcup_{\alpha} U_{\alpha}, \quad \exists \alpha_1, \dots, \alpha_n$$

such that $X = \bigcup_{i=1}^n U_{\alpha_i}.$

Theorem: A closed subset of a compact space is compact.

Sketch Proof: Let $A \subseteq X$ be closed and X compact. Given an open cover of A, extend it with $X \setminus A$ to cover X. Extract a finite subcover — those not covering $X \setminus A$ already cover A.

Definition (Hausdorff): A space X is *Hausdorff* if for all $x \neq y$, there exist disjoint open sets U, V with $x \in U, y \in V$.

Theorem: If X is compact and Hausdorff, then every continuous bijection $f: X \to Y$ is a homeomorphism.

Sketch Proof: Show that f is closed: Let $A \subseteq X$ be closed. Then A is compact, and so f(A) is compact in Y. If Y is Hausdorff, compact sets are closed $\Rightarrow f(A)$ is closed $\Rightarrow f$ is closed \Rightarrow inverse is continuous.

Definition (Homeomorphism): A map $f : X \to Y$ is a homeomorphism if it is a bijective continuous map with continuous inverse.

Theorem: The quotient of a compact space is compact. Sketch Proof: Let $\pi : X \to X/\sim$ be the quotient map. Given an open cover of X/\sim , pull back to get an open cover of X, which has a finite subcover. Push this forward to get a finite subcover of X/\sim .

Remark: Compactness is preserved under quotients. Hausdorffness is not: the quotient of a Hausdorff space need not be Hausdorff unless equivalence classes are closed.

Example (Non-Hausdorff Quotient): Identify all points of [0,1] to a point. Quotient is compact but not Hausdorff.

Differentiability in Multivariable Calculus

Definition (Differentiability at a Point): Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function, and let $a \in U$. We say that f is *differentiable at a* if there exists a linear map $Df(a): \mathbb{R}^n \to \mathbb{R}^m$ such that:

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - Df(a)(h)\|}{\|h\|} = 0.$$

The matrix of Df(a) in standard bases is the Jacobian matrix:

$$J_f(a) = \left(\frac{\partial f_i}{\partial x_j}(a)\right)_{1 \le i \le m, 1 \le j \le n}$$

Note: Differentiability implies continuity. Partial derivatives existing does not imply differentiability unless they are continuous (i.e. $f \in C^1$).

Completeness of Metric Spaces

Definition (Complete Metric Space): A metric space (X, d) is *complete* if every Cauchy sequence converges to a limit in X.

Definition (Cauchy Sequence): A sequence $(x_n) \subseteq X$ is Cauchy if:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall m, n \ge N, d(x_n, x_m) < \varepsilon.$$

Examples:

- \mathbb{R}^n with the Euclidean metric is complete.
- C([a, b]) with the sup norm is complete.
- Any closed subset of a complete metric space is complete.

Definitions

Continuity (Topological): A function $f : X \to Y$ between topological spaces is *continuous* if:

$$\forall V \subseteq Y$$
 open, $f^{-1}(V) \subseteq X$ is open.

Differentiability (Euclidean): Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$. f is differentiable at $a \in U$ if there exists a linear map Df(a) such that:

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - Df(a)(h)\|}{\|h\|} = 0.$$

Quotient Topology: Let X be a topological space, and \sim an equivalence relation on X. The *quotient topology* on

 $X/\!\sim$ is the finest topology such that the projection map $\pi:X\to X/\!\sim$ is continuous. Explicitly:

$$U \subseteq X/\sim$$
 is open $\iff \pi^{-1}(U)$ is open in X.

Product Topology: Let $\{X_i\}_{i \in I}$ be a family of topological spaces. The *product topology* on $\prod_{i \in I} X_i$ is the coarsest topology such that all projections $\pi_j : \prod X_i \to X_j$ are continuous. A subbasis is given by products $\prod U_i$, where $U_i \subseteq X_i$ is open and $U_i = X_i$ for all but finitely many *i*.

Gluing Lemma

Theorem (Gluing Lemma): Let $X = A \cup B$ with $A, B \subseteq X$ closed (or open). Let $f : X \to Y$ be a function such that:

- $f|_A : A \to Y$ is continuous
- $f|_B: B \to Y$ is continuous
- $f|_{A\cap B}$ agrees on the overlap
- Then $f: X \to Y$ is continuous.

Proof: Let $U \subseteq Y$ be open. Then:

$$f^{-1}(U) = (f|_A)^{-1}(U) \cup (f|_B)^{-1}(U)$$

Each preimage is open in A, B respectively, hence:

$$(f|_A)^{-1}(U) = A \cap V_1, \quad (f|_B)^{-1}(U) = B \cap V_2$$

for some open $V_1, V_2 \subseteq X$. So:

$$f^{-1}(U) = (A \cap V_1) \cup (B \cap V_2)$$

is open in X. Therefore, f is continuous.

Continuity: Sequential and Topological Criteria

Sequential Characterisation of Continuity: Let $f : X \to Y$ be a function between topological spaces.

Theorem: If X is first countable, then:

f is continuous at $x \in X \iff \forall (x_n) \to x, f(x_n) \to f(x).$

Proof Sketch: " \Rightarrow ": Follows from openness of inverse images. " \Leftarrow ": Assume inverse image of open $V \subseteq Y$ is not open in X. Then there exists a sequence $x_n \to x \in f^{-1}(V)$ with $f(x_n) \notin V$, contradicting $f(x_n) \to f(x) \in V$.

Closure Characterisation of Continuity:

Theorem: $f: X \to Y$ is continuous iff for every $A \subseteq X$,

$$f(\overline{A}) \subseteq \overline{f(A)}.$$

Proof Sketch: Let $x \in \overline{A}$. Then every open neighbourhood of x intersects A, so every neighbourhood of f(x) intersects f(A), implying $f(x) \in \overline{f(A)}$.

Continuity in Function Spaces

Let (Y, d) be a metric space and C(X, Y) the set of continuous functions from $X \to Y$, endowed with the sup norm:

$$||f - g||_{\infty} = \sup_{x \in X} d(f(x), g(x))$$

Theorem: If (Y, d) is complete and X is compact, then $(C(X, Y), \|\cdot\|_{\infty})$ is complete.

Proof Sketch: Let $(f_n) \subset C(X, Y)$ be a Cauchy sequence. Then for each $x, f_n(x)$ is Cauchy in Y, so converges to $f(x) \in Y$. Define $f : X \to Y$, show uniform convergence, and use uniform limit of continuous functions is continuous $\Rightarrow f \in C(X, Y)$.

Continuity in Product Spaces:

Theorem: A map $f: Z \to \prod_{\alpha} X_{\alpha}$ is continuous iff each composition $\pi_{\alpha} \circ f: Z \to X_{\alpha}$ is continuous.

Proof Sketch: Follows by subbasis definition of product topology: basic open sets are preimages under projections \Rightarrow continuity of f is equivalent to continuity of each coordinate function.

Topological vs Non-Topological Properties

Topological Property: A property of a space X that is preserved under homeomorphism. If $X \cong Y$ (i.e., there exists a homeomorphism), then X has the property $\iff Y$ does.

Examples of Topological Properties:

- Connectedness
- Compactness
- Hausdorffness
- Second countability
- Local connectedness / local compactness
- Continuity of maps Non-Topological Properties: Depend on more than

the topology — e.g., algebraic, geometric, metric.

Examples of Non-Topological Properties:

- Metrizability (unless specified otherwise)
- Boundedness (not preserved under homeomorphism)
- Total disconnectedness (in some settings)
- Smoothness / differentiability
- Distance and angles

Remark: Topological properties are defined in terms of open sets, closures, and continuous functions. Non-topological properties usually require extra structure (metric, vector space, etc.).

Weierstrass M-Test and Power Series

Weierstrass *M*-Test: Let $f_n : X \to \mathbb{R}$ be functions with:

$$|f_n(x)| \le M_n \quad \forall x \in X, \text{ and } \sum M_n < \infty.$$

Then $\sum f_n(x)$ converges uniformly and absolutely on X, and the sum is continuous if all f_n are.

Local Uniform Convergence of Power Series: Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ with radius of convergence R > 0. Then:

 $\sum a_n x^n$ converges uniformly on every compact subset of (-R, R).

 \Rightarrow Power series define continuous functions; term-by-term differentiation/integration valid on compact subsets within (-R, R).