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Fourier Transform Theory

Fourier Transform:

w- [ " f@edr, f@) = o / " fk)ete d

Key Properties:
Linearity: F{af + bg} = af + bg
Time Shift: F{f(x —a)} = e~ f(k)
Frequency Shift: F{ei” f(x)} = f(k — a)
Scaling: F{f(ax)} = |%LIf(k:/a)
Derivatives: F{f("™ (z)} = (ik)" f(k)
Multiplication by z™: F{a"f(x)} = i"f™ (k)
Convolution Theorem:

= e

Parseval Identity:

| s@par = o [ 1wk

— 00 — 00

(f*g)( (y)dy,

Delta Function Identities:

F{1} = 276(k), F{é(x —a)} =e

Poisson Summation Formula:

> fn)=3_ f(2rk)

nez keZ

Standard Transform Pairs:

Fleey = 2o

F{rect(x)} = sinc(k/2)

F{sinc(x)} = rect(k/2m)
F{H(xz)} = md(k) + i

(principal value)

f{e_‘xl} = 1+k2

Example: Heat Equation via Fourier Transform

Take FT in z: 1, =

= u(k,t) =

Uy = Dugy,
—DEk%*qu

u(z,0) = f(z)

ke PFt =

Or via convolution:

1 _(z—8)?
(e, t) = / 16 e T

F{f*g} = f(k)

U(l’,t) = %/f(k)e—Dtheikwdk

PDE Examples and Techniques
Poisson’s Equation in R? and R?

Equation: V?u = —f(x) on R

e In R2, Green’s function:

G(z,€) = —5-log e —

1
u(w) = [ ~5-logle - € 7€) ¢
R2 71'
e In R3, Green’s function:

o
Az — €|

— 1 3
ue) = [ g @

Separation of Variables: Heat Equation

Problem:

G(x,€) =

U = Uy, €[0,L], w(0,¢) =u(L,t)=0,
Ansatz: u(z,t) = X(z)T(¢)
T X" . /nTx —a?(nz
T = x AT Xamsin () Ta=er

General solution:
t) = Z: A, sin (?) e (%)t
9 (L
= Z/o f(x)sin <7n7£:v) dx

Fourier Transform Method for PDEs

Example: Solve wu; = Dugy, u(x,0) = f(x) on R
e Take FT in x: 4, = —Dk*a .
e Solve ODE: a(k,t) = f(k)e Pk

e Inverse FT:

1 [ ;
u(;[;ﬂf) = %/ f(k)e—Dkztezk;Edk

o If f(k) known (e.g. Gaussian), result is explicit.

Green’s Functions

ODE Case: Constructing G(z,§)

For a linear second-order ODE:

2] = g (v +atedy = £
We want: y(z) = [ G(x, &) f(§)dE

Step-by-step

1. Solve the homogeneous equation Ly = 0 to find y;(x)

and ys (z)

2. Compute Wronskian: W = y1y5 — yjy2
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3. Construct: Sturm—Liouville Theory

y1(2)y2(§) z <€

POW(E) General Form

G(x,8) =

v (E)pa(e) A Sturm-Liouville problem is:
pOWE: T8

P ti % (p(ai)jgyc) + Mw(z) —g(z)]ly=0 on [a,b
roperties:

o G(z,¢) is continuous in x at x = ¢

! o S with suitable boundary conditions, often:
e Discontinuity in 0, G at x = & satisfies:

oay(a) + azy'(a) =0,  Bry(b) + B2y’ (b) =0

oG _ec| 1

or | _ or| .. p

e=¢t o=t © Self-Adjointness
PDE Case: Whole Space The Sturm-Liouville operator is self-adjoint with respect to
the inner product:
Poisson Equation: V?u = —f in R"
e In R2: b
1 (f.9)= | [f@)g(z)w(z)ds
G(,€) = —5log|z — €] ‘
7r
o In R3: This implies:
1 e Real eigenvalues: A € R
G(z,€) = dr|z — €| e Orthogonal eigenfunctions: (Y, yn) =0if m #n
e Completeness: eigenfunctions form a basis for suitable
Then: function space
()= | Gl &)f(©)d
e Integration Factor Trick
Green’s Function in Bounded Domains To write a second-order ODE in self-adjoint form:
Given:
Lu=fin® ulpo=0=u)= / Gl €)£(€)de Y +r(a)y +s(@)y =0
Q

Multiply b h that:
If nonhomogeneous BCs, boundary terms arise: ultiply by p(x) suc &

u(z) = /ch+/m {ng u?)ﬂ s pu(@)y” + p(@)r(z)y

d
r_ < / _ fr(w)dw
7z @)y = pu(z) =e

This gives self-adjoint form:

Green’s Identities d
— (u(2)y") + pu(z)s(x)y =0
Identity I (Integration by parts): dz (ule)yf) + pz)s(a)y

/ (uv2v +Vu- VU) dQ — / u@ds Eigenfunction Expansion
Q oa On

If {y,} is the set of eigenfunctions:
Identity II (Symmetric form):

— Jo F@)yn(@)w(z)dz
2 2 ov ou f(l’) - Z anyn(x)a ap = b
/(uV v —oVu)dQ = / u— —v— | dS =1 [ y2 (x)w(z)d
O a0 on on @
Jump and Symmetry Conditions Example: Classic Dirichlet Problem
For LG = 5(z — £): Y+ =0. 9(0) = (L) = 0= yu(x) = sin ("T0) a, = (
o G(x,&) is symmetric: G(z, &) = G(&, x)
o G(x,&) is continuous at = ¢ These form an orthogonal basis on [0, L] with weight
e Derivative jump: w(z) =1
oG oG L nra mrx
_ _ — _1 . . .
on. et on, e /o sin (—L ) sin (7[/ ) dr=0 forn#m
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Method of Characteristics Bessel Functions and Fourier—Bessel Series
Purpose Origin: Laplace in Polar Coordinates
Used to solve first-order PDEs of the form: Consider Laplace’s equation in 2D polar coordinates:

2 1 1 2
VQUZM—F*@—Ff@:O

2 2 992
Idea: Along special curves called characteristics, the or ror o0
PDE becomes an ODE. Try separation of variables: u(r,6) = R(r)0(6).
Substitute and divide:

CL($, Y, U)UI + b(SC, Y, U)Uy = 6(377 yv u)

Characteristic System
TZR// + TR/ C,_)// 9
Let x(s),y(s), u(s) describe the characteristic curve. Then: R + o - 0 = Each term = —n

dx dy

d .
T =alwyw), S=beyw), T =y Angular part:

Solve these ODEs with appropriate initial conditions. O(0) = Acos(nb) + Bsin(nd)

. Radial part gives Bessel’s equation:
Linear Case

If a, b, ¢ are independent of u: r’R"+rR + (r =n*)R = 0= R(r) = Ju(r), Yn(r)

a(m,y)uw + b(x,y)uy = c(m,y) = Solve dj = 5 = — Bessel’s Differential Equation
’ a
2y’ +ay + (2 —n®)y =0
Quasilinear Case

Solutions:

If a,b,c depend on u, characteristic curves must be found 4 Jp(z) — Bessel function of the first kind (finite at z = 0)
together with u: . Yn( ) — Bessel function of the second kind (singular at

dx dy du =0)

e, F=bw), T =cw)

Zeros and Boundary Conditions
Initial condition: wu(z,0) = f(z) gives a curve in

(z,y,u) space to start integrating from. The zeros oy, m of J,(x) are used in boundary conditions

like w(R,0) =
Well-Posedness Condition

Let initial curve be v(s) = (z(s),y(s)). The problem is Orthogonality of J.

well-posed if: R o o
n,m n, kT
(a,b) - (7(s)) # 0 /O rJn( R )Jn( I )dr:O for m # k
That is, the characteristic direction is not tangent to the
initial curve. Fourier—Bessel Series

If f(r) is defined on [0, R], expand:

Shock Formation (Quasilinear Case)

In u; + wu, = 0, characteristics:

dz du
= E:0¢u:f($o):>$:m0+f($°)t

_ fOer(T)Jn (St dr

Characteristics intersect (shock forms) when: —
m R Qp,mT\ 12
Jo'r [T (F5=) ) dr

d 1

L 4 o)t =0=t, = ————— if f/(z9) <0

dzo f'(z0) N .

xample: Circular Membrane
Example: Linear Transport Solution:
Solve: QAn,m" . —An.
8 t Anm n ( ) Bnm 0 Cnm 0 o
w20 =0, u(,0) = b(x) u(r, Z (Bn,m cos(nd) + Cy, m, sin(nh)) e

Characteristic ODEs:
Where:

2
ii; =2=x=2t+1z9, u=¢o(xg)=u(z,t)=¢(x—2t) Aom = (a"’m>
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Legendre Polynomials and Spherical Harmonics Application: Expanding f(6, ¢)
If f is defined on the sphere:

Laplace Equation in Spherical Coordinates

¢
10 [ ,0u 10 ou 1 0% c-
2= — = (2= — [ sinf— _ f(0,0) = aemY;" (0,9
Viu r2 Or (T 8r>+r2sin989 (mn 89>+r25m293¢2 6. 9) ;mgz em¥E" (6,0)
Assume u(r,0,¢) = R(r)O(6)®(4) and separate vari- L
ables. o = /f(@, ®)Y, (0, ¢) sinfdb do
Angular Separation Green’s Function via Method of Images
®(¢): Problem Setup: Exterior of a Sphere
0%® ,
907 +m2d=0= & =¢"m? Let Q = R3\ B(0, R) — the region outside a sphere of radius
R.
() gives: Goal: Find Green’s function G(Z, _> for Poisson’s equa-
tion: .
1 d d 2 VG =—§(F—¢§), T€Q
— (Sin9@)+{€(£+1) .m2 } ©=0= 0= P;"(cosb) @-¢), @
sin 6 do e sin” 0 with boundary condition: G = 0 on || = R.

—

Assume source point £ is outside the sphere, i.e., €] > R.
Legendre’s Equation

. Image Method Idea
For m = 0, standard Legendre equation:

Place an image charge at:

d*y dy
1—a2%)— — 22— +L(l+1)y=0 2
€12
Solutions: P;(x) — Legendre polynomials.
with strength:
. R
Associated Legendre Functions qg =——=
€l
For general m: Then define:
dm| o= 1 R 1
pPm —(1=g)ml/2—_p G(Z,€) = __ 2. _
= G Y. ]
Orthogonality Relations Properties of G

1 o G satisfies V2G = —§(%
/ Py(x)Pp(z)de =0 ifl#k e G=0on|¥ =R
-1 e G is symmetric: G(Z,€) = G(E, 7)

|
oy
=
o)

T 27 Use in Solving Poisson’s Equation
Y (0,0)Y (0, p)sin 6 dop df = 0pk0mn
/0 0o (6,97 (6,¢) ¢ o Given V2u = —f in Q, with u|gq = 0, the solution is:
Spherical Harmonics u() = / G(Z, g)f(g) d*¢
Q

Y0, ¢) = Ny P (cos 0)e'™?  with Ny, = \/ T +ﬂ£'§“!arks
The method of images only works in highly symmetric do-
Used in solving Laplace and Helmholtz equations in mains (e.g. spheres, half-spaces) where image charges can

spherical domains. be explicitly constructed to satisfy boundary conditions.
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Euler—Lagrange Equation

Given a functional of the form

b
Fm:/fm%wm,

a necessary condition for y(x) to extremise F' is the Euler—
Lagrange equation:

d (0f
i (3)

First Integral: Eliminating y

af
_87y_0

Special Case
If the integrand f(z,y,y’) does not depend explicitly on v,
then:
0 d (0
—f =0 = — —f =0
y dz \ Oy’
This implies:
0
—f = constant.
oy’
First Integral: Eliminating x
Special Case

If the integrand f(x,y,y’) does not depend explicitly on z,
then:
of _

=0.
oz
Define the quantity:
of
H=f—y .
f—y By
dH
= 0 = f- y’g—j = constant.
Interpretation

This is analogous to conservation of the Hamiltonian in
mechanics — a conserved quantity associated with trans-
lational symmetry in x.

Example: Brachistochrone Problem
1+ (y)?
Vo

This has no explicit z-dependence, so

of |
'—* = constant = ————— =ky—y.
oy’ 1+ (y)2 y

f=

-y

Solve for y(x) using a cycloidal parametrisation.

Euler—Lagrange Equation with Constraints
Setup

Suppose we wish to extremise

b
Fly] =/ f(z,y,y)dx

subject to a constraint
b
Gly] = / g9(z,y,y) dv = k.
a

Lagrange Multiplier Method

Define a new functional:

¢MM=HM<WM=/

a

b
(f —Ag) dz.

Then apply the usual Euler-Lagrange procedure to the in-
tegrand f — Ag:

da (3(1’&1)) _O(f—Ag)

dx oy’ Oy =0

Example: Dido’s Problem

Maximise the area under a curve with a fixed arc length.

b
Objective: Aly] :/

Define:
h=y—A/1+(y)%

Use the first integral form (no z-dependence) on h to find:

d ([ Oh oh
- (8y’> ~ oy 0 = y—AV1+(¥)?= constant.
Multiple Dependent Variables

Setup

Let y(z) = (y1(2), y2(2), ...
tional:

,Yn(2)), and define the func-

b
F[]j] :/ f(xyyl;---ayn’ylla"'7y;l)dx'

Euler—Lagrange System

The necessary conditions for ¢(z) to extremise F are:

d (ofy_of
dz \ Oy; y;

First Integrals
o If 0f/0y; =0, then:

=0 foralli=1,...,n.

—— = constant.
3y3»

e If f has no z-dependence:

"0
N Zyga—f, = constant.
Yi

=1

b
y(z) dx, Constraint: L[y]:/ V1+ (y)?da
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Multiple Independent Variables
Setup

Let ¢ : R® — R™ be a vector-valued function defined on a
region D C R™. The functional is:

F[¢]:Lf(xlaaxnv¢av¢)dnx

Euler—Lagrange PDE

The generalised Euler-Lagrange equation is:

In index notation (summation implied):

af_ _ af _
B @Q@@>O‘

Derivation Sketch

e Perturb ¢ — ¢ + en with n vanishing on 9D.
e Use divergence theorem to move derivatives off 7.
e Apply fundamental lemma = PDE above.

Example: Laplace’s Equation

Minimise potential energy:

Flol = [ 562+ &) dody,

Then: 5 5 5
o _y 91 9 4,

o 7 0o, 99y

= ¢xa

Higher Derivatives

Setup
b
F[y]=/ fyy Y. y™) da.

Euler—Lagrange Equation (General Form)
The generalised form is:

- d* ([ of

S 1 (k) =0
P dxk \ oy
Boundary Conditions

The variation 7(z) must satisfy:

¥ (a) =n®®) =0 for k=0,1,...

7n_1a

Example: Elastic Beam

Minimise bending energy:

Fly] = /O (y")*dz, subject to y(0) = y'(0) =0, y(1) =0, y'(1) = 1

of _gp &

— @ — .
oy v dx? 4

2y")=0 =

First Integral for n = 2
Special Case

If the integrand f(z,y’,y”) does not depend explicitly on
1y, then:

of d (of\ d* [(Of _
a0 7 m(ay) dw?(ay" =0

af d (af

dy  dz \dy"

) = constant.

Example

Extremise:

1
FM:A@WM

y(0) =9'(0) =0, y(1)=0, ¥'(1)=1

Since f = (y")? and does not depend on y or ¥/, we get:

—(2)=0 = yW=o0.

dx?

Principle of Least Action
Setup

In classical mechanics, the trajectory of a particle is found
by extremising the action functional:

2

Slal = [ Lia(t). (000,
ty

where L = T — V is the Lagrangian: kinetic energy minus

potential energy.

Euler—Lagrange Equation

The action S[z] is extremised when:

d (0L

dt \ 0;
This is the Euler-Lagrange equation in time-dependent
form, yielding the equations of motion.

oL

- =0.
al‘i
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Example: Newton’s Second Law

Let
1
T:§m$2, V=V, L=T-V.
Then:
d d

This recovers Newton’s law: force equals mass times ac-
celeration.

Lagrange Multipliers

Finite-Dimensional Case
Single Constraint

To extremise f(x,y) subject to g(z,y) = ¢, the condition is:
Vf=AVg.

Interpretation: At an extremum, the level set of f is
tangent to the constraint surface g = c.

Multiple Constraints

If g1(z,y) = c1 and ga(,y) = ca, then:
Vf=MVg1+ A Vgs.

Variational Case (Functional Constraints)

Single Constraint

To extremise

b b
F[y]=/ f(z,y,y')dz  subject to /g(x,y,y’)dfc=c,

define the augmented functional:

b
Hly] =/ (f = Ag) da.
Apply the Euler-Lagrange equation:

d (3(f— Ag)) _O(f —Ag)

dz oy’ Ay =0

Example: Dido’s Problem

e Objective: maximise Afy] = f;y(x) dx

e Constraint: L[y] = f; V1+ (y)2de =L
e Lagrangian:
h=y—A/1+ (y')?

e Apply first-integral form (no z-dependence):

oh 1
/ _ _ _
h—y oy const =y — A = = const.

1+ (v)

Legendre Transform

Definition

Let f(z) be a convex, differentiable function. The Legen-
dre transform of f is the function g(p) defined by:

g(p) = sup (px — f(x)).

If f is strictly convex and differentiable, then the supre-
mum occurs where:

p=f'(2),

and the transform becomes:

9(p) =pz — f(z), withz=(f)""(p).

Inverse

The Legendre transform is involutive:

f(x) = Sup (pz —g(p))-

Setup

Given a Lagrangian L(q, ¢), define the conjugate momen-

tum:
_OL

P*afq-

Hamiltonian

The Hamiltonian is defined as the Legendre transform of
L with respect to ¢:

H(q,p) = pq— L(q,q).

This expression must be rewritten in terms of (g, p) by solv-
ing ¢ as a function of p.

Geometric Interpretation

e The Legendre transform replaces the variable x with the
slope p = f’(x) of the tangent line to the graph of f.

e The value g(p) gives the vertical intercept of that tangent
line:

9(p) = px — f(x), withp= f'(z).

e The transform captures the geometry of a convex func-
tion in terms of its tangents, encoding all the information
in terms of slope rather than position.

e Involutive property: This viewpoint makes clear why
the transform is symmetric:

f(z) = Sl;p(px —9g(p))-

Duality Identity
If f(x) and g(p) are Legendre transforms of each other, then:
f(@) +g(p) = pr, where p= f'(z) and z = ¢(p).

Interpretation: This expresses a dual pairing between
the variable = and its conjugate p. The total quantity pz is
split into two contributions.
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Young’s Inequality
Statement

Let a,b > 0, and let p,q > 1 with % + % = 1. Then:

aP bl
ab < —+ —,
p q

with equality if and only if a? = b?.
Derivation (via Convexity)
Let f(z) = %’J. Then f is convex on [0, 00) because:
(@) =(p—-1)aP"2>0 forx>0.
Let a,b > 0, and define:

f(a) + f*(b) > ab,

where f* is the **Legendre transform** of f. For f(x) =
%, we have:

Y4
[fly) ==, where —4+-=1
q p q
Therefore:
al? b
ab < — 4+ —.
q

Equality Condition
Equality holds if and only if the slopes match, i.e.:

aP "l =p1"t & gP =9,

Convexity and Optimisation

Convex Functions

A function f: R — R is convex if for all z,y and A € [0, 1]:
fOz+ (1= Ny) < Af(2) + (1= A f(y).

If the inequality is strict for « # y, then f is strictly
convex.

Second Derivative Test

If f is twice differentiable:
o f"(x) >0 for all x implies f is convex.
o f"(x) > 0 for all x implies f is strictly convex.

Convex Optimisation (Single-variable)
Global Minima

If f is convex on an interval, then:
e Any local minimum is a global minimum.
o If f is strictly convex, the global minimum is unique.

First-order Condition

If f is differentiable, then:

f(z*)=0 = 2" isalocal extremum.
If f is convex, this is a global minimum.
Geometric Interpretation

For convex f, the graph lies above all its tangents:

f) =z f(@)+ f(@)(y — ).

This inequality characterises convexity and forms the basis
of duality theory.

Convexity in Variational Calculus

Let Fly] = f: f(x,y,y") dx be a functional.

Second Variation

To assess whether F' is minimised at y, consider the second

variation:
b 2 2
0% f o°f
2 _ 2 / N2
5ﬂwm/<ﬂ@gﬂm HM8W>M

a

o%f
Oyoy’

Sufficient Condition for a Minimum

If 62F[y](n) > 0 for all admissible ) # 0, then F is strictly
convex and y is a strict local minimiser.

Second Variation and Minimisation Criteria
Second Variation

Let Fly] = f; f(z,y,y’) dz be a functional, and suppose y is
a critical point (i.e. satisfies the Euler—Lagrange equation).
The second variation is defined by:

b 2 9 9
2ruln = [ (9 d o o 67 2

m 8y8y’ 8y/2
Interpretation

This arises from expanding F[y + en] to second order in e:
2
€ .
Fly +en) = Fly] + e0F[y)(n) + 50 Flyl(n) + O(<?),

Sufficient Condition for a Minimum

Suppose y satisfies the Euler—Lagrange equation for the
functional

b
Fly] = / f(z,y,y) dx,

and consider perturbations y + en with n(a) = n(b) = 0.
If the second variation satisfies:

§2F[y](n) > 0 for all admissible 5 # 0,

then y is a strict local minimiser of F.
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Analogy

This is analogous to the second derivative test in one-
variable calculus:

local minimum.

f(z)=0 and f"(z)>0 =

Convexity and Functional Minimisation

If the integrand f(z,y,y’) is convex in (y,y’) for each z,
then the functional

b
Fly] = / flx,y,y') dx

is convex on the space of admissible functions.

Implication

If y satisfies the Euler-Lagrange equation and f is convex
n (y,y'), then y is a global minimiser of F.

Strict Convexity

If f is strictly convex in (y,y’), then any solution y is a
strict global minimiser.

Example: Second Variation for Fly] = [(y')*dz
Let
b
Pl = [ ) do
a
First Variation
The Euler—Lagrange equation gives:
d o
— =0 = ¢"=0
7 (2Y) y

Solutions are straight lines: y(z) = ax + b.

Second Variation

Perturb y by n with n(a) = n(b) = 0:

b
82 Fyl(n) = / 2(n)?dx >0 for all n # 0.

Hamiltonian Formulation

From Lagrangian to Hamiltonian

Given a Lagrangian L(q, ¢), define the conjugate momen-

tum:
0L
p= EYR
Assuming this relation can be inverted to write ¢ in terms
of p, the Hamiltonian is defined via a Legendre transform:

H(q,p) = p¢— L(q,q).

Hamilton’s Equations
The dynamics are governed by the system:

_oH
=5

_9H
0q

Fermat’s Principle

Light travels between two points along the path that min-
imises travel time.
Time Functional

In a medium with variable speed v(x,y) (or refractive index

n(x,y) =1/v):

V1
/ + dx = [ n(z,y)v1+ (v)? de.
Euler—Lagrange Equation

Apply the Euler-Lagrange equation to:

f@,y,y") =n(z, )1+ (y)%

Special Case: Snell’s Law

If n jumps across a boundary (e.g. piecewise constant), min-
imising T'[y] leads to:

sinf;  sinfy

U1 V2

)

i.e., Snell’s Law.

Surface Area Minimisation (Soap Film)

Consider a surface of revolution about the z-axis generated
by a curve y(x).

Surface Area Functional
b
Aly] = / 2ry/1 4+ (y')? dx.

Euler-Lagrange Equation

For
fy,y') = 2my /14 (y')?,

the Euler-Lagrange equation gives the minimal surface of

revolution:
df__yv y_1 1
de \ T+ )2 ) v V1+@)?

Solution: The minimising surface is a catenoid:

Tr — X
a .

y(z) = acosh <
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Bernoulli’s Equation

Steady Flow (Inviscid, Incompressible, Irrotational)

For a steady, inviscid, incompressible, and irrotational flow:
1, .
Pl + p + p® = constant along a streamline.

Interpretation: Kinetic + pressure + potential energy
per unit volume is conserved.

Special Cases

o & = gz for gravity potential = classic Bernoulli:

1
—u?+ i + gz = const.
2 p

e Applies globally only for irrotational flow. Otherwise,
only along streamlines.

Unsteady Bernoulli Equation

Assume unsteady, irrotational, incompressible, inviscid flow.
The velocity field is a potential flow:

i =Vo.

From Euler’s Equation:

oit 1
“+v(1ﬁ+p+@)_o
2 p

ot
Integrate in space:

%4

1o, p
— —4+ o= f(t
o Tat T, f(),

where f(t) is a function of time only.
Standard form:

%

o u? + g + ® = const (in space).

1
2
Derivation (Steady Case)
. . 1
(@ -V)i=—--Vp—Vo.
p
Use vector identity:

1

(mvm—v<2

>—ﬁ><(V><ﬁ).
If flow is irrotational: V x 4 = 0, so:
Loy P
Vizu"+=+®)=0.
2 p

Integrate

10

Streamfunction and Velocity Potential
Streamfunction ¢ (2D Incompressible Flow)
Defined such that:

o
-2

o
- Ox’
Properties:
e Automatically satisfies incompressibility: % +
e Lines of constant ¢ are streamlines.

v

gv — .

Velocity Potential ¢ (Irrotational Flow)

Defined such that:

_ 9

i=Vo B

Properties:
e Flow is irrotational: V X @ = 0.
e ¢ satisfies Laplace’s equation in incompressible flow:

V3¢ = 0.

Poiseuille and Couette Flow

Poiseuille Flow (Pressure-Driven Flow)

Description: Steady, fully-developed, incompressible vis-
cous flow between two stationary parallel plates (or inside a
circular pipe), driven by a pressure gradient.

Assumptions:
e Unidirectional flow: @ = u(y)i
o Ju _ du _
ox 0z
o 22 _ 9 _
oy — T 0z
° 1d
p
u(y) = ——
(y) o1 da

Boundary Conditions:
e No-slip: u(0) =0, u(H) =0

Profile: Parabolic velocity profile with maximum at
channel center.

Couette Flow (Shear-Driven Flow)

Description: Steady viscous flow between two parallel
plates, with the bottom plate stationary and the top plate
moving at velocity U.
Assumptions:
Unidirectional flow: @ =
No pressure gradient: g—g

u(y)i
-0

u(ly) =Ay+ B

Boundary Conditions:
u(0) = 0 (stationary plate)
u(H) = U (moving plate)

Solution:

uw=%y

Profile: Linear velocity profile.
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Vorticity Equation and 2D Incompressible Flow

Vorticity Transport Equation

For an incompressible, inviscid flow, taking the curl of
the Euler equation yields:

Dw

In 2D incompressible flow, the right-hand side van-
ishes (since w is perpendicular to the plane of motion), so:

Dw
Dt
Implications in 2D Incompressible Flow

e w = constant along trajectories.

e If the initial flow is irrotational (w = 0), it remains ir-
rotational.

e If initially vortical, the distribution of vorticity is merely
advected by the flow.

Relation to Streamfunction

For 2D incompressible flows, define a streamfunction v

such that:
Lo
oy’ - oz’

Then the vorticity becomes:

w= -V

Surface Wave Theory

Boundary Conditions

e Bottom Boundary Condition (Impenetrability):
w=0 atz=—h,

where w is the vertical velocity and h is the fluid depth.
e Kinematic Boundary Condition (Free Surface):
0 0
87;7 +ua—z =w atz=n(z,t),
where 7n(z,t) is the surface elevation. For linear theory,
this is often approximated as:
0
a—z =w atz=0.
e Dynamic Boundary Condition (Free Surface Pres-
sure):

D = Patm at z= 77(9€7t)

In linearised theory:
p=0 atz=0,

assuming constant atmospheric pressure and neglecting
surface tension.

11

Dispersion Relation

For inviscid, incompressible, irrotational flow with a free
surface under gravity, the dispersion relation is:

w? = gk tanh(kh),

Potential Flow Solutions

Flow Around a Cylinder

Velocity potential:

2
¢=U(7‘+a;n>cosﬁ

Streamfunction:

2
w—U(ra)sinﬁ
T

Velocity components:

a? a?
uT:U(1—2> cosf, wug=-U (1+2> sin 6

T T
Pressure (via Bernoulli):

1
by —|ii|* = const
p 2

Flow Around a Cylinder with Circulation

Velocity potential:
2
T
¢U<r+a) cosf + —60
r 27

Streamfunction:
2
r
¢:U<r—a> sinf — —Inr
r 27
Lift (Kutta—Joukowski theorem):
L=pUT

Stagnation point shift: Circulation displaces the stag-
nation points off the horizontal axis.

Flow Around a Sphere

Velocity potential:

3
¢U<r+a)cos0

272

Velocity field:

a® a® .
uT:U<1—TS> cosf, wug=-U <1+27‘3> sin 0

Result: Zero drag (D’Alembert’s paradox), symmetric
pressure distribution.
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Added Mass

Definition: Effective mass of fluid accelerated along with
the body.
Sphere moving in fluid: Added mass is:

ST D e
added — 2P 37Ta

Cylinder (2D) moving in fluid:

2
Madded = TTPA

Kelvin’s Circulation Theorem

Statement

In an inviscid, barotropic fluid with conservative body
forces, the circulation around a material (fluid-following)
loop is conserved:

Dr
— =0, whereI’:f u -
Dt c(t)

Rotating Fluids and Shallow/Deep Water

dz.

Rotating Fluids and the Coriolis Force

In a frame rotating with angular velocity €2, the

Navier—Stokes equation becomes:
Du
"Dt

where 20 x 4 is the **Coriolis force**.
e In large-scale geophysical flows, this term becomes domi-

nant.
e Leads to phenomena such as **geostrophic balance**:

+2pQ x il = —Vp+ pj + pVZ3i,

1
—=Vp =20 x 4.
p

Shallow Water Equations

Assume horizontal length scales > vertical scale. Let h(x,t)
be fluid height and @(z,t) horizontal velocity.
e Mass conservation:

Oh

¢ Momentum conservation:
ot

E + (17: V)ﬂ = 79Vh

Linearised Shallow Water Equations

Linearise about rest state with small perturbations. Then:

on ol
— +HV-u=0 — = —gV
gt TV U0 G T IV
Leads to the wave equation:
0%n .
Frol AV,  with ¢ = /gH.

Deep Water Waves

For waves where water depth h — oo, the dispersion relation
becomes:

w? = gk
with:
ao 2T _w_ g _ w1
I R Vi 9= gk~ 2“

Key features:
e Phase speed decreases with increasing k (shorter wave-
lengths move slower).
e Group velocity is half the phase speed.

Boundary Conditions in Fluid Dynamics

1. Free Surface

Let the free surface be given by z = n(z, y, t).

Kinematic Boundary Condition

No fluid crosses the surface:

Dn 0On on on
Z1_ s il = t
Dt = 5t uaervay w onz=n(x,y,t)
Linearised:
% =w atz=0

Dynamic Boundary Condition
Balance of pressure at the surface:
P = Patm OI z:n(xayat)

2. Rigid Boundary
Let the rigid boundary be at z = h(z,y) (or simply z = 0).
Kinematic Boundary Condition

No flow through the wall:

=0

>

a - (normal component vanishes)
If the wall is flat at z = 0, then:

w=0 onz=0

More generally: if the surface is z = h(z,y),

on z = h(z,y)

Dynamic Boundary Condition

Not generally required — the wall can exert any normal
stress.

12
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3. Interface Between Two Fluids

Let two fluids (densities p1, p2) meet at a surface z
n(z,y,1).

Kinematic Condition

The interface must move with the fluid:

Dn
Dt

_ Dn
Dt

=w on interface
fluid 2

fluid 1

Dynamic Condition

Normal stress must be continuous No surface tension:

p1 = ps across the interface

Tangential Stress Condition (Viscous case)

If viscosity is included, continuity of tangential stress is also
required:

a

Conservation of Momentum (Integral Form)

Ju
0z

ow

)} =0 and similarly for v
Ox across interface

Let V(t) be a control volume with boundary 0V(t), velocity
field u, pressure p, and external body force per unit mass f
(e.g., gravity).

Statement

d
/ pﬁdV—i—/ pu(d-n)dS = o-n dS+/
V(t) oV (t) oV(t) V(t)

Terms

dt

° / pttdV: total momentum in the control volume.
%

pu
v

. (@-n)dS: momentum flux across the boundary.

. o - dS: surface forces (normal + viscous stresses).

oV
° /pde: body forces (e.g. gravity).
%

Simplification (Inviscid Flow)

If the fluid is inviscid, then the stress tensor reduces to —pI,
so:
7=

o-h=—ph = a~ﬁdS:—/ pidS
A% oV

Interfacial Wave Dispersion Relation

Consider two immiscible, incompressible fluid layers of den-
sities p; (upper) and py (lower), with ps > p;. The interface
lies at z = 0 in the undisturbed state. We assume irrota-
tional motion and linearise the governing equations.

13

. UT:U(I—G
pfdv "

Velocity Potentials
Let the velocity potentials be:
b1(x, 2, t) = AreF#e’ R for 2 <0 (upper fluid),

Go(x, z,t) = Age "2 FT=9)  for 2 > 0 (lower fluid).

Boundary Conditions at the Interface
e Kinematic condition (both fluids):

O¢1 _9n  9¢ _On
8z ot 9z ot

e Dynamic condition (pressure continuity):
02
+ 977> = p2 <

Dispersion Relation

at z=0

961

(8
P1

oD —I—gn) at z=20

ot

Combining the conditions yields the dispersion relation for
interfacial gravity waves:

P2 — P1

p2 + p1

w? = gk

Lift on a Cylinder (Pressure Integration)

Setup

Consider steady, incompressible, irrotational flow with cir-
culation I' past a cylinder of radius a. The velocity field in
polar coordinates (r,#) is:

2

2

2

r
a4 )sin9+
r

2 2

>Cos9, vg = —U <1—|—

On the surface r = a:

r
v, =0, wvg=-2Usinf + ra

Ta

Pressure from Bernoulli

Apply Bernoulli’s equation (assuming constant pressure at
infinity):

1
P =P+ §/J(U2 —v?),

where v? = v} on the surface.

Lift Force

The lift is the vertical component of pressure force:

27
L:f/ p(0) - asin 6 df.
0

Substitute vy and compute:

r r\?
vg = —2Usinf+ —, v:=(-2Usinf+—| .
2ma 2ma

Only the cross term in v? contributes to the integral:

2 1—\
L:pU/ (2Usin9~>asin9d9:pUF.
0 27Ta
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Continuity Equation in Quantum Mechanics
The continuity equation expresses the local conservation of
probability:

dp
E—FV J—O

where:
e p = [1)|? is the probability density
e j is the probability current density

Derivation from the Schrédinger Equation

SO
"or T Tamy VTVY

Multiply by ©* and subtract the complex conjugate of
the equation multiplied by :

0 o™ h
4w = LT Ty — g Ty)
8 2 h * * _
FIP+ 9 (o v = uve) ) =

Thus, the probability current density is:

B
5 (W'Y — 9V

i=
Integral Form

The integral form over a region ) with boundary 0¢:

d

w%v_—/’jﬁw
dt i a0

The continuity equation ensures that probability is con-
served. The total probability inside a region changes only
due to the flux of probability current across the boundary.

Angular Momentum Operator

The orbital angular momentum operator is defined as:

=

L =7x ]7 = L, = Eijkl'j(—ihak) = —ihGiij'jak.

Cartesian Components

0 0
L,=—ih|y— —2— ), L,=-—
‘ (yaz Zc')y) Y
0 0
L,=—th|lz— —y— ).
! (xay yax)
Commutation Relations
[LZ', LJ] = iheijkLk.
[L? L;] =0 for all i.

[Li, x;] = iheijrar, [Li,pj] = iheijrpr.

14

Eigenfunctions in Spherical Coordinates

For central potentials, the Schrodinger equation reduces to

an equation involving L2.

e The eigenfunctions of L? and L, are the spherical har-
monics:

L] KEZZ(), andm=—0—0+1,... /0.

Heisenberg Uncertainty Principle

Statement

For any pair of observables A and B, represented by Her-
mitian operators A, B, the uncertainty relation is:

s

where 04 = ((A— (
for 0]23.

))?) is the variance of A, and similarly

Cauchy—Schwarz Derivation

Let ¢ € H, and define:

o
s

AA=A—(4), A —(B).
Apply the Cauchy—Schwarz inequality:
[(AAY, ABY)[* < (AAy, AAY) - (ABY, ABY).
This becomes:
[(WIAAABIY)[® < oot

Write:

Use: )
(AAMBIE > (5 (4.8)) -
i
This gives the uncertainty relation.

Application to Position and Momentum

For Z and p, we have:

St

[I7p} = Zh7 = Umgp Z a

2

General Observables

For any pair of Hermitian operators /1, B, this yields a con-
straint on the product of variances:

(sud.m)

2 2
0A0p 2
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Harmonic Oscillator Example

Ground state wavefunction:

mw 1/4 —mwz?/2h
Yo(w) = ( wh ) € .
Then:
9 h 5  hmw h
oy = o’ o, = - = 0z0, = 3

This saturates the inequality — the ground state of the har-
monic oscillator is a **minimum uncertainty state**.
Interpretation

- The lower bound of the uncertainty relation is reached
only when the state is a Gaussian wavepacket. - Equality
occurs when the commutator and anticommutator terms are
aligned in phase.

Hydrogen Atom

Time-Independent Schrédinger Equation

The potential for the hydrogen atom is:

\%4 .
(r) dmegr

In spherical coordinates, the time-independent Schrédinger
equation is:
h2
—ﬂv% +V(r)y = Ey.

Separation of Variables

Assume (1,0, ¢) = R(r)Y (0, ¢), where Y (0, $) are spheri-
cal harmonics satisfying:

LYY = h2(L +1)Y.

Radial Equation Derivation

The radial equation becomes:

R [1d [ ,dR 20+1) e?
S 22 () - — ER.
2u |:T2 dr (r dr) r2 R] 477507“R R
Let u(r) = rR(r), giving the simpler form:
2 12 2 2
_Edi+ RPUE+1) e w = Eu
2u dr? 2ur? dmegr

Energy Levels
Solutions for u(r) lead to the quantised energy levels:

13.6eV
o 2

pet

En = — e
327r26(2)h2n2

n=123,...

)
n

Quantum Numbers and Allowed Values

- n € Z*: principal quantum number. - £ = 0,1,...,n — 1:
angular momentum quantum number. - m = —f, —{¢ +
1,...,¢: magnetic quantum number.

Inequality: |m| < £.

15

Wavefunction Interpretation

- The total wavefunction is:

'L/)nfm (Ta 97 (b) = Rnf (r)}/lm(ea ¢)

- Ry¢(r) determines the radial distribution; nodes increase
with n — ¢ — 1. - Yy, determines angular dependence;
complex-valued in general. - The probability density is:

[4(r,0,0)]> = |R(r)*[Yem (9, 0) .
- The radial probability density is:

P(r)dr = |R(r)|*r* dr = |u(r)|* dr.

Degeneracy
The degeneracy of the n-th energy level is:

n—1

g(n) => (20 +1) =n’.
=0
Asymptotic Behaviour of u(r)
For large r: u(r) ~ e *" for some o > 0. For small r:

u(r) ~ r*1 to cancel the 1/r? centrifugal term.

Hermitian Operators and Expectation Values

Definition

An operator A is Hermitian if:

/7/1T(A1/)2)d13 = /(Ai/h)*?/& dr  for all 41, 9s.
This implies (¢, Ay) € R, i.e., expectation values are real.

Expectation Value

Given a normalized state 1, the expectation value of ob-
servable A is:

(A) = /w*mp da.

If A is Hermitian, then (A) € R.

Eigenfunctions and Spectra

If A is Hermitian:

e Eigenvalues are real.

e Eigenfunctions corresponding to distinct eigenvalues are
orthogonal.

Hermiticity of Common Operators

e Position operator: & is Hermitian.

e Momentum operator: p = —ihd, is Hermitian with suit-
able boundary conditions.

e Hamiltonian H is Hermitian so that energy is real and
probability is conserved.
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Commutators and Hermiticity 1D Potential Square Well

For two Hermitian operators A, B, the commutator [A, B] Infinite Square Well
is anti-Hermitian:
Potential

(A, B]' = —[A, B].
{O, 0<zx<a,

V =
() 0o, otherwise.

So i[A, B] is Hermitian.

The wavefunction t(z) must vanish at © = 0 and = = q,
since the potential is infinite outside.

In the region 0 < 2 < a, the time-independent
Derivation from Time-Dependent Schrédinger Equation Schrodinger equation becomes:
(TDSE)

Ehrenfest’s Theorem

R B2 d%y B
Let (A) = (1| AJ)) be the expectation value of an operator Comdr? ¥,
A in the state 1 (z,t) satisfying the TDSE: ) )
with general solution:
o s
th— = Hq. 2mFE
ot v P(x) = Asin(kz) + Bceos(kz), k= ;_Ln .
Then the time derivative of the expectation value is:
d A\ 1 $(0)=0=B =0, w(a)=0=sin(ka)=0= k= —
Loay = (AN L Lya . = =0 = =0=h=
Z(4) <m>+mq7n a
A Energy Levels
If A has no explicit time dependence, this simplifies to:
h2r2n?
E,=——, n=123,...
94y = (A a) 2ma?
AT A
Normalised Wavefunctions
Applications to Position and Momentum
w(x)—\/§51n(m> 0<z<a
Take the standard Hamiltonian: Vo a /)’ '
N P2
H = om + V(g}) Quantum Harmonic Oscillator and Ladder Operators
m
Hamiltonian

Using the commutation relation [#,p] = ifi, we get:

For position: The quantum harmonic oscillator has Hamiltonian:

~2
d 1 I 1 2 p 1 2.2
DA — s — 4 H=—+- .
o) = ([ 1) = — (). om "2
For momentum: Ladder Operators
d . 1. i dv Define the annihilation and creation operators:
S0 = H) =~~~ ) . .
a= .,/ Q+Lﬁ at = /¥ @_Lﬁ
2h mw' )’ 2h mw' )’
Classical Correspondence
These resemble Newton’s laws: Commutation Relation
R b
d . (p) d . [a,a'] = 1.
— = == —(p) = (F).
S@y="T S =(F)

Hamiltonian in Terms of Ladder Operators
Interpretation: The expectation values of quantum

observables obey classical equations of motion — this is a 7w lata 1
form of the quantum-to-classical correspondence principle. - aatg ).

16
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Energy Eigenstates and Eigenvalues
Define the number operator:

with N|n) = n|n).

N =ala,

Then the eigenstates and energies are:

- 1
H|n>:hw(n+2) In), n=0,1,2,...

Action of Ladder Operators
alny = vnln—1), a'ln) =vn+1jn+1).

Ground State Wavefunction

The ground state satisfies @|0) = 0, leading to:

5"

mu.)zz

2h

mw
7h

Yo ()

Excited States

Higher wavefunctions can be obtained by applying a' re-

peatedly:
1

_ ~T\n
n(x) = —(a x).
They can also be expressed in terms of Hermite polyno-
mials:
mw\ /4 1 [mw _ mws?

Time-Dependent Perturbation Theory

General Setup
Suppose the Hamiltonian is of the form:
H(t) = Hy + AV (1),

where Hy is the unperturbed Hamiltonian and V(¢) is a
small time-dependent perturbation.
Assume: R
Hy|n) = E,|n).

First-Order Transition Amplitude

The first-order probability amplitude to transition from
state |i) to |f) is:

1

Y=

€y

¢
/0 (FIV()iYe™ ¥ dt’,  where wp; = p

Transition Probability
1
Py (t) = | ()

Fermi’s Golden Rule

If V(t) = Ve ™t + c.c., and there’s a continuum of final
states:

2 R
Pisy = S UAVIDPR(EY).

where p(Ey) is the density of final states.

Ey - E;

17

Delta Function Potential

Potential Definition

V(z)

—ad(z), a>0.

Time-Independent Schrédinger Equation

Py
2m dx?

~ ab(@)e(x) = Ed(a).

Bound State Solution

Seek solution 1 (x) = Ae™ "l with x > 0. Matching discon-
tinuity in derivative:

2mao
Y(07) ~0/(07) = - 22 0).
Gives:
mao ma?
" T T

Boundary Conditions

e ¢(x) is continuous at = = 0.
e Discontinuity in derivative given by delta potential:

P'(07) =9 (07) = ——5-1(0).

2ma
h2

Two-Level Systems and Time Evolution

General State
Let |(t)) = c1(t)|1) + c2(t)|2), where:
H1) = Bi|1), H|2) = BE»|2).

Time Evolution

If no perturbation:
() = c1(0)e™ ML) + ey (0)e™F21")2).

Revival Time

Define AE = E5 — E;. Then the **revival time** is:
2rh
T=——.
AFE
At time T, the system returns to its initial state up to a
global phase.

Oscillations in Probability

el = [ (0, [e2(t)]* = |e2(0)]%,
but relative phase oscillates, giving interference in observ-
ables.

With Coupling (e.g. Rabi oscillations)

If a time-dependent coupling exists between |1) and |2), gov-

erned by V(t) = A€ cos(wt)d,, transition probabilities os-
cillate sinusoidally (Rabi formula).
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Spectral Theorem for Real Self-Adjoint Operators

Definition (Self-Adjoint Operator): Let V be a finite-
dimensional inner product space over R. A linear map

a € L(V) is called self-adjoint if
(a(v), w) = (v, v(w))

Lemma: Let a € £(V) be self-adjoint. Then all eigen-
values of a are real.

Proof sketch: Let v € V be an eigenvector with eigen-
value A, so a(v) = Av. Then

)‘<U7U> = <Oé(’U),U> = <U,Oé(1})> = X<’U7’U>7

soA=\cR.

Lemma: Eigenvectors of a self-adjoint operator corre-
sponding to distinct eigenvalues are orthogonal.

Proof sketch: Let a(v) = Av and a(w) = pw with X # p.
Then

for all v,w € V.

Mo, w) = (a(v), w) = (v, a(w)) = p(v, w),

so (A — p){v,w) =0 implies (v, w) = 0.

Spectral Theorem (Real Case): Let V be a finite-
dimensional inner product space over R. Then every self-
adjoint linear operator a € L(V) is diagonalizable, and there
exists an orthonormal basis of V' consisting of eigenvectors
of a.

Equivalently: If A is a real symmetric matrix, then A
is orthogonally diagonalizable: there exists @ € O(n) such
that QT AQ is diagonal.

Proof: We proceed by induction on dim V.

Base case: dimV =1 is trivial.

Inductive step: Assume the result for dimension n — 1.
Since « is self-adjoint, it has a real eigenvalue A with eigen-
vector v # 0. Let U = (v)*.

Claim: U is a-invariant.

Let w € U, so (u,v) = 0. Then

(a(u),v) = (u,a(v)) = (u, W) = XN u,v) =0,

so afu) € U.

Thus, «|y is self-adjoint on a space of dimension n — 1.
By the inductive hypothesis, U has an orthonormal basis
of eigenvectors of a. Together with v/||v||, this gives an

orthonormal basis of eigenvectors for V.
[ |

Sylvester’s Law of Inertia

Theorem (Sylvester’s Law of Inertia): Let V be a
finite-dimensional real inner product space, and let b :
V xV — R be a symmetric bilinear form. Then there
exists a basis of V' in which the matrix of b is diagonal with
entries in {—1,0,1}, and the number of each of these entries
(the signature) is independent of the choice of diagonalizing
basis.

In other words, any real symmetric bilinear form is con-
gruent to a diagonal matrix with only +1, —1, and 0 entries,
and the number of each is an invariant of the form.

Definition: The signature of a symmetric bilinear form
is the triple (n4,n_,ng) where:

18

n4 = number of +1s (positive index),
n_ = number of —1s (negative index),
e ng = number of Os (nullity).

Proof Sketch:

Choose a basis and represent b by a real symmetric matrix
A.

Use orthogonal change of basis (Gram—Schmidt and con-
gruence) to bring A into diagonal form.

e Diagonal entries must be real (since A is symmetric).

e Using congruence (not similarity), the diagonal matrix
has entries in {—1,0,1} after scaling.

Sylvester’s Law says the counts of each type (+1, —1, 0)
are invariant under congruence transformations.

a=(13)

This matrix is real symmetric, so it represents a symmetric
bilinear form on R2.

Example: Let

2 1
1 2

Compute eigenvalues: 2 +1 = 3,1 (both positive), so it
is positive definite. Thus, its signature is (2,0, 0).
Now consider:

1 0 0
B=10 -1 0
0 0 O

Signature is clearly (1,1,1) — Sylvester’s Law asserts that
no congruence transformation can change this signature.

Gram—Schmidt Orthogonalization

Let V be a finite-dimensional inner product space
over R. Suppose {v1,va,...,v,} is a basis for
V. The Gram-Schmidt process produces an orthonor-
mal basis {ej,es,...,e,} such that span(ej,...,ep) =
span(vy, ..., vg) for all k.

Algorithm:

Define u; = vy, and then recursively

k—1
Vg, Uj
uk:vk—zw j, fork=2,...,n.
= (ug, uj)
Then define
U
ey = —k, fork=1,...,n.
([
Output: {e1,...,e,} is an orthonormal basis of V.
Properties:
e Each ey is orthogonal to e1,...,ex_1.

[ ] <ei76j> = 5”

e The process is numerically unstable in floating-point
arithmetic; modified Gram—Schmidt can be used in prac-
tice.
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Orthogonal Complements and Direct Sum Decomposi-
tion

Let V be a finite-dimensional inner product space over R,
and let U C V be a subspace.

Definition (Orthogonal Complement): The orthog-
onal complement of U is the subspace

Ut :={veV:(vu)=0forallucU}.

Proposition:
V=UaU"',

that is, every vector v € V can be uniquely written as
v=u+w withu € U and w € U+.

Proof Sketch:
Choose a basis {u1,...,u;} for U.
Extend it to a basis {v1,...,v,} for V.
Apply Gram—Schmidt to obtain an orthonormal basis
{e1,...,en} of V, where {ei,...,ex} spans U.
Then {exy1,...,¢e,} spans U™,
Every v € V can then be written as v = > 1" (v, €;)e;
with components in U and U+.

Corollary:

dimV = dimU + dim U*.
Orthogonal Projection: The map 7y : V. — U de-
fined by

k
mu(v) = Z(v, ei)e; where {eq, ..
i=1

is the orthogonal projection onto U along U-~.
Characterization:
v—my(v) €UL, and my(v) € U.
Hence v = 7y (v) + (v — 7y (v)) is the unique decomposition
of v into U and U+ components.

Orthogonal Projections

Let V be a finite-dimensional inner product space over
R, and let U C V be a subspace with orthonormal basis
{617 ceey ek}'

Definition (Orthogonal Projection): The orthogo-
nal projection of v € V onto U is

Properties:
ny(v) € U, and v — 7y (v) € U™,
7y is linear: 7y (Av + pw) = Ay (v) + pry (w).
7y is idempotent: 7y (7y (v)) = 7y (v).
my is self-adjoint: (my (v), w) = (v, 7y (w)).

Matrix Form: Let F be the nxk matrix whose columns
are the orthonormal vectors ey, ..., ex. Then the projection
matrix is

P=FET,
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and for v € R™ viewed as a column vector,
7y (v) = Pu.

Application (Least Squares): Given A € R™*™ and
b € R™, the least squares solution to Az = b is the z mini-
mizing ||Az — b||?, given by solving

AT Az = AT,
which corresponds to projecting b orthogonally onto Im(A).

Simultaneous Diagonalisation

Theorem (Simultaneous Diagonalisation): Let V' be
a finite-dimensional inner product space over R. Suppose
a, B € L(V) are self-adjoint and commute: af = Sa. Then
a and B are simultaneously diagonalizable: there exists an
orthonormal basis of V' consisting of vectors that are eigen-
vectors for both o and S.

More generally: If {a;}F | is a commuting family of
self-adjoint operators on V', then there exists an orthonor-
mal basis of V' consisting of simultaneous eigenvectors for
all Q.

Proof Sketch:

e Since each «; is self-adjoint, it is diagonalizable with an
orthonormal basis of eigenvectors.

e Because the operators commute, the eigenspaces of one
are invariant under the others.

e Proceed inductively: diagonalize 1 to get decomposition

.,ex} is an orthonormal basignép Drthogonal eigenspaces.

e Restrict each a; to these eigenspaces; since they commute
and are self-adjoint, repeat the process.
e The final basis simultaneously diagonalizes all «;.
Application: Let A, B be real symmetric n X n matri-
ces such that AB = BA. Then there exists an orthogonal
matrix @ such that

Q"AQ =D, Q"BQ=Dp

with both D4 and Dp diagonal.

Remark: Commuting alone does not imply simultane-
ous diagonalisation unless the matrices are also diagonaliz-
able — which self-adjointness guarantees in the real inner
product case.

Matrix Similarity, Commutators, and Centralisers

Definition (Similarity): Two matrices A, B € Mat, (F)
are similar if there exists an invertible matrix P € GL,,(F)
such that

B =P 'AP.

Similarity preserves many algebraic properties: determi-
nant, trace, characteristic polynomial, eigenvalues, minimal
polynomial, and rank.

Definition (Commutator): Given A, B € Mat, (F),
their commutator is

[A,B] .= AB — BA.

We say A and B commute if [A, B] = 0.
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Observation: Similarity is an equivalence relation. If
A ~ B, then A and B represent the same linear operator
with respect to different bases.

Definition (Centraliser): Let A € Mat,,(F'). The set

{B € Mat,(F) : AB = BA}

is a subspace of Mat,, (F') called the centraliser of A (though
not named this in our course). It consists of all matrices that
commute with A.

Examples:
e If A= M\, for some scalar A\, then AB = BA for all B.
e If A is diagonal, then B commutes with A if and only if

B is diagonal (in general, if A has distinct eigenvalues).

Application (Simultaneous Diagonalisation): If A
is diagonalizable and B commutes with A, then B preserves
the eigenspaces of A. This often enables simultaneous diag-
onalisation.

Exercise: Show that the set of all B commuting with
a given A forms a vector space, and compute its dimension
in a few concrete examples.

Fitting’s Lemma and Image—Kernel Decomposition

Fitting’s Lemma: Let V be a finite-dimensional vector
space and let « € L(V'). Then there exists an integer m > 0
such that
V =ker(a™) @ Im(a™).
Details:

e The sequence ker(a) is increasing, and Im(a*) is decreas-

ing.
e Since V is finite-dimensional, both sequences stabilize:

there exists m such that

ker(a™) = ker(a™™1),

e Then V = ker(a™) @ Im(a™).
Interpretation:

ker(a™) is the generalized null space of a.

Im(a™) is the stable image.

The restriction &y, om) is injective.

The restriction &|yer(qm) is nilpotent.

Im(a™) = Im(a™").

Remarks:

The decomposition is not a-invariant in general.

e In the case where o is a linear operator on V and its
minimal polynomial splits into relatively prime factors,
Fitting’s Lemma is used to decompose V into primary
components.

Example: Let A = (O 0

0 1). Then A% =0, so
ker(4%) =R? Im(A4%) = {0}.
So V = ker(A?) @ Im(A?) trivially.
Addendum: Connection to Primary Decomposition and

Jordan Form

Primary Decomposition Theorem: Let o € £(V') have
minimal polynomial

ma(t) = pr()"™ - pr ()™,
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where the p; are distinct monic irreducible polynomials over
F. Then

k
V= EBW, where V; := ker(p;(a)™).

i=1

Each V; is a-invariant, and «|y, has minimal polynomial p;*.

Use of Fitting’s Lemma: Within each V;, we apply
Fitting’s Lemma to write

Vi = ker(aly) @ Im(aly;),

giving a decomposition into a nilpotent part and an invert-
ible (or semi-simple) part.

Application to Jordan Form: For o with minimal
polynomial splitting into linear factors over F (e.g. over C),
the primary decomposition groups generalized eigenspaces:

V= @ker((a —AI)").
A

Fitting’s Lemma provides the basis for constructing Jordan
blocks: each ker((a — AI)") is where the nilpotent action
lives, layered by powers of (o — AI).

Summary: Fitting’s Lemma gives the internal struc-
ture of each generalized eigenspace, forming the backbone
of the Jordan canonical form construction.

Trace Identity: tr(AB) = tr(BA)

tr(AB) = tr(BA)
Theorem: Let A € Mat,, «m(F) and B € Mat,, x,(F).
Then

tr(AB) = tr(BA).

Proof Sketch: Write out the trace:

i=1 i=1 j=1
j=1 j=11i=1

The two sums are equal by rearranging the order of sum-
mation.

Remarks:

e This holds even when AB and BA are not the same size
(e.g. ABisn xn, BAism xm).

e In particular, if A, B € Mat,,(F) then tr(AB) = tr(BA).

e Generalization: For any k € N, tr(A4; Ay - -+ Ag) is invari-
ant under cyclic permutations.
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Commutators and the Kernel of Trace

Fact: The set of all commutators [4, B] := AB — BA in
Mat,,(F') spans the kernel of the trace map:

ker(tr) = span{AB — BA : A, B € Mat,(F)}.

Proof Sketch:

e For any A,B € Mat,(F'), we have tr(AB — BA) =
tr(AB) — tr(BA) = 0.

e So every commutator lies in ker(tr).

e Conversely, ker(tr) is a hyperplane in Mat,,(F') (codimen-
sion 1), and it can be shown that the span of commutators
is already n? — 1-dimensional, hence equals the kernel.

Interpretation: The trace map tr : Mat, (F) — F is
surjective with 1-dimensional image, and the space of trace-
zero matrices is exactly the space generated by commuta-
tors.

Example:

0 1 0 0 1 0
a=(3 o). 5= (3 0) am-ma=(y 9).

This matrix has trace zero and lies in the span of commu-
tators.

Uniqueness of the Trace Function

Theorem: Let f : Mat,, (F') — F be a linear map such that

f(AB) = f(BA) for all A, B € Mat,,(F).

Then f is a scalar multiple of the trace: there exists ¢ € F'
such that
F(A) = ¢ tr(A)

Proof: Let E;; € Mat, (F') denote the standard matrix
units: (Eij)kl = 5ik5jl'
1. For i # j, compute:

[(Eij) = f(EuEsj) = f(EijEy) = f(Eij),

for all A.

and
f(Eij) = f(EixEyj) = f(Ex;Eix) =0,

for k # i, j — and more generally, we can construct A, B so
that AB = E;; but BA =0 if i # j, forcing f(E;;) = 0.
So all off-diagonal entries vanish under f:

2. For diagonal entries E;; and Ej;:
[(Eii) = f(EijEj) = [(EjiEij) =

so all f(E;;) are equal. Let ¢:= f(F11).

Then for any A =73", ; a;; E;j;, we have:

f(Ej;),

f(A) = Zau‘f(En‘) = Czan‘ =c-tr(4).
1=1 i=1

|
Corollary: The trace map is the unique linear map
f : Mat, (F) — F satisfying

f(AB) = f(BA) and f(I)=n.
Proof: From the above, f = c¢-tr, and f(I) = c¢-tr(I) =
cn. So to force f(I) = n, we must have ¢ = 1, hence f = tr.

Useful Problem-Solving Identities

Polarisation Trick (Hermitian/Symmetric Forms):
Let v be a symmetric bilinear form on a complex vector
space. Then

bu,0) = = 3 CFp(ut¢Fu, uch),  where ¢ = €7/ n > 2.
n
k=1

Averaging isolates the cross-term via orthogonality of roots
of unity.
Cyclic Trace Identity:

tI‘(AlAQ cee Ak) = tI‘(AkAl s Akfl).

Useful when trace appears in a product — allows cyclic re-
arrangement.
Rank—Nullity Theorem: For any a € L(V):

dimV = dimker o + dim Im o.

Diagonalisation by Spectral Theorem: For real
symmetric A, there exists @ € O(n) such that:
QTAQ =D (diagonal).

Projection Formula: Let {e,...,e;} be an orthonor-
mal basis for subspace U. Then the orthogonal projection

onto U is:
k

7y (v) = Z(fu, €;)e;.

i=1
Minimal Polynomial Identity: If m,(¢) is the mini-
mal polynomial of a € £(V), then:

me(a) =0,

Schur Decomposition (over C): Any A € Mat,,(C)
is unitarily triangularizable:

A=UTU*, withU € U(n), T upper triangular.
Commutator Trace Identity:
tr([A4, B]) = tr(AB — BA) = 0.
Double Commutator Identity (Lie-type trick):
[A,[A,B]] = A2B — 2ABA + BA%.

Useful in induction or polynomial identity manipulation.

and m,, is the monic polynomial of least degree with tl
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Gauss’s Lemma and Eisenstein’s Criterion (General
Form)

Let R be a unique factorisation domain (UFD), with field of
fractions F'. Define the content of f € R[z] as cont(f) = ged
of its coefficients. Say f is primitive if cont(f) = 1.

Gauss I: cont(fg) = cont(f) - cont(g)

Proof: Let f =c- f', g = d- ¢ where f', ¢’ are primitive
and ¢ = cont(f), d = cont(g). Then

fg=cd-f4q.

We prove f’¢’ is primitive.

Suppose p is an irreducible in R dividing all coefficients of
f'g’. Then reduce modulo (p) to get f-¢g’ = 0in (R/(p))[x].
But since R/(p) is an integral domain (as R is a UFD), this
implies f/ = 0 or ¢’ = 0, i.e., all coefficients of f’ or ¢’ are
divisible by p — contradicting primitivity.

Hence f’¢g’ is primitive, and cont(fg) =
cont(f) cont(g).

cd =

Gauss II: Primitive Irreducible in R[z] = Irreducible
in Flz]

Proof: Let f € R[z] be primitive and irreducible in R[z].
Suppose f = gh in F[z]. Then write g = a"1g’, h = b~ 1h/
with ¢’, b’ € R[z], and a,b € R\ {0}.
Then 1
f=—=gh =abf=4ghn.
ab

Take contents: cont(abf) = ab (since f primitive), and
cont(g’) - cont(h’) = ab by Gauss I. Set

/

g" = cont(¢') g, " :=cont(h')"'n

so g, h" are primitive, and
f=4¢"h" € Rx].

Then f is factored into non-unit elements of R[z|, contra-
dicting irreducibility.

Gauss IIT: Primitive = Irreducible in F[z] < Irre-
ducible in R[z]

Proof: (=) is Gauss IL
(«<): Let f be primitive and irreducible in F[z]. Suppose
f=gh in R[z]. Then f is reducible in F[x], contradiction.

Eisenstein’s Criterion

Let f(z) = > ja;z" € R[z], and let p € R be an irre-
ducible element such that:
e p|ag,..
* ptan,
o p?{ap.
Then f is irreducible in F[x], where F is the field of fractions
of R.

Proof: Suppose f = gh in R[x] with degg,degh <
deg f.

<y n—1,

Let g =Y biz’, h =3 cja’ with degrees r, s, 7+ s = n.
Then
ag = boCQ.

But p | ap implies p | by or p | ¢o.

WLOG p | by. Let k be the least index such that p 1 by.
Such k exists since p { ay,.

Consider the coefficient a; = Ziﬂ.:k bic;. All b; with
i < k satisfy p | b;, and by is the first with p { by. Since
p | ax by assumption, the sum

ay, = brco + (terms divisible by p)

implies p | byco = p | ¢ (since ptbg), so p| by and p | ¢o.
Hence p? | ap = boco, contradicting the assumption that
P2 f ag.
Therefore, f is irreducible in R[z] and hence in F[z] by
Gauss II.

Sylow’s Theorems

Let G be a finite group, and let |G| = p™m, where p is prime
and pfm.

First Sylow Theorem

Statement: G has a subgroup of order p* for every 0 <
k < n. In particular, there exists a subgroup of order p" (a
Sylow p-subgroup).

Proof (Sketch for maximal k£ = n): Act on the set X
of subsets of G of size p™ by left multiplication. Then count
the number of such subsets and show that some stabiliser
must have order divisible by p™. Alternatively, induct on
|G| using Cauchy’s theorem and normalisers.

Second Sylow Theorem

Statement: Any two Sylow p-subgroups of G are conju-
gate. Moreover, every p-subgroup is contained in a Sylow
p-subgroup.

Proof: Let P be a Sylow p-subgroup and let @) be any
p-subgroup. Consider the action of @) on the left coset space
G/P by left multiplication. Then |G/P|=m and ptm, so
the number of fixed points is congruent to |G/P| mod p.

By the orbit-counting lemma, some fixed point exists —
i.e., some gP is fixed by Q, which implies Q < gPg~'.

Third Sylow Theorem

Statement: Let n, be the number of Sylow p-subgroups of
G. Then:

n, =1 (modp), n,|m.

Proof: Let G act on the set & of Sylow p-subgroups
by conjugation. Then the orbit of any Sylow p-subgroup P
under this action has size equal to |G : Ng(P)|.

But P < Ng(P), and |P| = p™,sop 1 |G : Ng(P)|. Thus
each orbit has size not divisible by p.

Now apply orbit counting or consider the conjugation
action directly: by counting fixed points, we obtain n, = 1
mod p.

22
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Smith Normal Form and Classification of Abelian

Groups

Let R be a PID (typically R = Z), and let M be a finitely
generated R-module.

Smith Normal Form (SNF)

Theorem: Let A be an m X n matrix with entries in a PID
R. Then there exist invertible matrices P € GL,,(R) and
Q@ € GL,(R) such that

di 0 0
0 do 0
PAQ: 0 O d'f )
0 0 0
0 0 0
Wlthd1|d2||drlnR

Proof Outline: This is done by performing elementary
row and column operations to diagonalise A, clearing lower
entries via division (possible in PIDs), using the Euclidean
algorithm to enforce divisibility conditions.

Interpretation: If A is the matrix of a homomorphism
R™ — R™, then the cokernel

coker A & @R/(diR) ®R™".

i=1

Structure Theorem for Finitely Generated Abelian
Groups

Let G be a finitely generated abelian group. Then:
Theorem (Invariant Factor Form): There exists an
isomorphism

G2ZL ®Z/d @ - ®ZL/dy,

Withdl |d2 | |dk anddiZQ.
Theorem (Elementary Divisor Form):
tively,

Alterna-

G=ZL"®Z/p; ®---®ZL/p;,

with p; prime and exponents e; > 1.

Proof Idea: Regard G as a module over Z, present it
as Z™/im(A) for some integer matrix A, and apply Smith
Normal Form to A. The invariant factors d; are the diagonal
entries in SNF.

Corollaries

e Every finite abelian group is isomorphic to a finite direct
sum of cyclic groups of prime power order.

e The invariant factors are unique up to isomorphism of G.

e The torsion subgroup of G is isomorphic to the torsion

part P Z/d;.
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Structure Theorem for Finitely Generated Modules over
a PID

Let R be a principal ideal domain (in our case, typically a
Euclidean domain), and let M be a finitely generated R-
module.

Statement (Invariant Factor Form)

There exists an isomorphism
M =R ®R/(d)®R/(d2) ®--- & R/(dy),

where d; € R are nonzero and satisfy dy | da | --- | di. The
d; are called the invariant factors of M, and r is the rank
of the free part of M.

Alternate Form (Elementary Divisors)

Equivalently, M decomposes as
M =R & D R/0),
i=1
where each p; is irreducible (typically prime) in R.

Proof Sketch (Euclidean Domain Version)

1. Present M as a quotient: Let M be generated by n
elements, so there exists a surjective map:

¢: R" — M.

Then M = R"/ker ¢.
2. Represent ¢ by an m x n matrix A with entries in R,
corresponding to a presentation of M.
3. Use elementary row and column operations (invertible
over R) to bring A into Smith Normal Form:
PAQ = diag(dy, da, ..

i, 0, ...

,O), Wlthd1|d2||d1C

4. Then M = R/(dy) & -+~ ® R/(d)) & R"~*.
5. The free rank r := n — k is uniquely determined as
dimp(M ®g F) for F = Frac(R).

Remarks

- The d; are uniquely determined up to associates and sat-
isfy dy | da | --+ | d. - The decomposition reflects torsion
and free parts:

Mtor = @R/(dz)a Mfree =R"

- This generalises the classification of finitely generated
abelian groups when R = Z.
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Hilbert’s Basis Theorem

Theorem: Let R be a Noetherian ring. Then the polyno-
mial ring R[] is also Noetherian.

Proof: Let I C R[z] be an ideal. We aim to show that
I is finitely generated.

For each n > 0, define

I, := {a € R| there exists f(x) €I

with deg f = n and leading coefficient a}.

That is, I,, consists of all possible leading coefficients of
degree-n polynomials in 1.
Each I,, is an ideal of R. Since R is Noetherian, the
ascending chain
LhchLhcCch<C---

stabilises. That is, there exists N € N such that for all
n>N,I,=1Iny.

Now, for each 0 < n < N, choose finitely many polyno-
mials fr1,..., far, €1 of degree n such that their leading
coefficients generate I,.

Let S be the finite set of all such polynomials across all
n < N. We claim that S generates I.

Let f € I be arbitrary. We induct on the degree
d=degf.

If d > N, then the leading coeflicient a of f lies in
I; = In. So a = ), 7;a; where each a; is the leading
coefficient of some fy ;.

Then define

g = Zrixd_NfN,ji € (S).

Note that g and f have the same degree and leading coeffi-
cient, so f — g has degree < d and lies in I. By induction,
f—g€(S),s0 fe(S).
If d < N, the same argument applies using fq ;.
Therefore, I is generated by S and R[z] is Noetherian.

Noetherian Rings and Modules

Definition: A ring R is Noetherian if every ascending chain
of ideals
LCLCI;C---

stabilises; i.e., there exists n such that I, = I,, for all kK > n.
Equivalently, R is Noetherian if every ideal of R is
finitely generated.

Noetherian Modules

Let M be an R-module. Then M is called Noetherian if

every submodule is finitely generated. This is equivalent to

every ascending chain of submodules of M stabilising.
Examples:

e 7 is Noetherian, since every ideal is of the form (n).

e A field F is trivially Noetherian.

e Zx] is Noetherian by Hilbert’s Basis Theorem.
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Standard Lemmas and Properties

Lemma (Submodule Lemma): If M is a Noetherian R-
module and N < M, then N is Noetherian.

Lemma (Quotient Lemma): If M is Noetherian and
N < M, then M/N is Noetherian.

Lemma (Extension Lemma): Let 0 = N — M —
P — 0 be a short exact sequence of R-modules. Then:

M Noetherian <= N, P Noetherian.

Corollary: If R is Noetherian and M is a finitely gen-
erated R-module, then M is Noetherian.

Proof Sketch: Let M = Rmj+---+ Rm, be generated
by n elements. Define a surjective map:

Sy Tp) Zrimi.

Then M = R™/ker ¢, and since R"™ is Noetherian and quo-
tients of Noetherian modules are Noetherian, M is Noethe-
rian.

¢:R"—> M, (r,..

Important Consequences

e Every ideal in a Noetherian ring is finitely generated.

e Every submodule of a finitely generated module over a
Noetherian ring is finitely generated.

e Hilbert’s Basis Theorem: If R is Noetherian, then R[z] is
Noetherian.

e Every finitely generated algebra over a Noetherian ring is
Noetherian.

Theorems on PIDs and UFDs
Definitions

e A principal ideal domain (PID) is an integral domain in
which every ideal is of the form (a) for some a € R.

e A unique factorisation domain (UFD) is an integral do-
main in which every nonzero non-unit can be written as
a product of irreducibles, uniquely up to unit and order.

Theorems on PIDs

e Every PID is Noetherian.

e Every PID is a UFD.

e Every finitely generated torsion-free module over a PID
is free.

e Every submodule of a free module over a PID is free (in
the finitely generated case).

e Let R be a PID, and M a finitely generated R-module.
Then:

with dy | -+ | dj.

Theorems on UFDs

e Every PID is a UFD, but not every UFD is a PID (e.g.

klz,y]).
e In a UFD, irreducibles are primes (i.e. p | ab= p | a or

p|b).
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In a UFD, GCDs exist and can be expressed as linear
combinations in special cases (e.g. Euclidean domains).
e If R is a UFD, then so is R|x].

e Gauss’s Lemma holds: if R is a UFD, then R[] is a UFD.
e In a UFD, any polynomial in R[z] is reducible in R]x]
if and only if it is reducible in Frac(R)[z], provided it is
primitive.

Consequences and Comparisons

e FEuclidean = PID = UFD = integral domain.

o 7, k[x] are PIDs; k[z,y] is a UFD but not a PID.

e The structure theorem for finitely generated modules ap-
plies over PIDs (but fails in general UFDs).

Gauss’s Lemma and Eisenstein’s Criterion require UFD
assumptions (or PID for cleaner argument).

Rational Canonical Form via the Structure Theorem

Let V be a finite-dimensional vector space over a field k,
and let T : V — V be a linear map.
Idea: Treat V as a module over k[z] via:

flx)-v:=f(T)(v), for f(x)€ k[z], ve V.

Then V' becomes a finitely generated k[z]-module. Since
k[z] is a PID, the structure theorem applies.

Structure Theorem Application

There exists an isomorphism of k[z]-modules:
V= P klz]/(fi(x), where f; | fir1.
i=1

The f;(xz) are the invariant factors of T, determined
uniquely up to associates. The largest invariant factor is
the minimal polynomial of T'.

Matrix Form

With respect to a suitable basis, the matrix of T' is block-
diagonal:

C(f1)
RCF(T) =
c(fr)
where C(f) is the companion matrix of f(x).

Companion matrix: If f(x) = 2"+a,_12" '+ - -+ao,
then

0 0 0 —ap

1 0 0 —-a
C(f) = 0 1 0 —ao

0 0 1 —Qp—1
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Uniqueness and Minimal Polynomial

e The invariant factors f;(x) are uniquely determined by 7.

e The product [] fi(z) = xr(x) is the characteristic poly-
nomial of 7.

e The largest invariant factor equals the minimal polyno-
mial of T'.

Summary

e The Rational Canonical Form is unique up to similarity
over k.

e It provides a complete invariant for similarity classes over
arbitrary fields.

e The module-theoretic view avoids eigenvalues and diago-
nalisation.

Core Definitions (GRM)

e A group (G,-) is a set with an associative binary opera-
tion, an identity element e, and inverses: Vg € G,3g~! €
G such that gg~! = e.

A ring (R, +, ) is a set with two operations: (R,+) is an
abelian group, multiplication is associative, and distribu-
tive over addition.

A ring is a domain if it is commutative with 1 # 0 and
has no zero divisors.

A field is a commutative ring in which every nonzero el-
ement has a multiplicative inverse.

An ideal I C R is a subset such that I is an additive
subgroup and r € R, a € I = ra € I.

A module over a ring R is an abelian group M with a
scalar multiplication R x M — M satisfying:

r(m+n) = rm+rn, (r+s)m =rm+sm, (rs)m =r(sm),
A module is Noetherian if every submodule is finitely
generated (equivalently, satisfies the ascending chain con-
dition).

A principal ideal domain (PID) is an integral domain
in which every ideal is of the form (a) for some a € R.

A unique factorisation domain (UFD) is a domain
where every nonzero non-unit factors into irreducibles,
uniquely up to unit and order.

A finitely generated module is a module M with
a finite generating set: Imq,...,m, € M such that
A linear operator T : V — V is diagonalisable if V has
a basis of eigenvectors of T.

The minimal polynomial of T is the monic polynomial

m(z) of least degree such that m(T") = 0.
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Contraction Mapping Theorem (Banach Fixed Point
Theorem)

Theorem: Let (X, d) be a complete metric space, and let
f: X — X be a contraction; that is, there exists 0 < ¢ < 1
such that

d(f(z), f(y)) < cd(z,y), Vo,yeX.
Then:
1. f has a unique fixed point z* € X, i.e. f(z*) = z*.

2. For any xg € X, the sequence defined by x,,11 = f(xy,)
converges to z*.

3. Moreover, the convergence is geometric: d(z,,z*) <
d($1,$())~

1—c

Proof:

Let 2o € X be arbitrary and define the sequence x,, :=
f(zp—1) for n > 1.

Step 1: Show (z,,) is Cauchy.

We have:

d(Zny1,Tn) = d(f(2n), f(Tn-1)) < cd(zp, Trn_1).
By induction:
d(Tpy1,7n) < c"d(x1,20)-

Then for m > n,

m—1 m—1

d(xm;zn) S Z d(gjk+17$k) S d(l‘hl‘o) Z Ck S

k=n

CTL

1—c¢

k=n

Hence (x,,) is Cauchy, and since X is complete, z,, — x* for
some z* € X.

Step 2: f(z*) = x*.

Since f is continuous (as it is Lipschitz), we have:

f(@®) = f (lima,) = lim f(z,) =limz,41 = 2™

Step 3: Uniqueness.
If f(y) =y and f(z) = z, then:

d(y,z) = d(f(y), f(2)) < cd(y, 2),

implying (1 —¢)d(y,2) < 0=y = z.

Application: Iteration for Solving Equations

Given a recurrence or functional equation of the form z =
f(z), one can apply the Banach Fixed Point Theorem to
prove: - Existence and uniqueness of a solution - Conver-
gence of the iteration x,11 = f(z,) - Geometric rate of
convergence

Example: Solve x = cosz.

Let f(z) = cosx on [0,1] with the usual metric. Then f
is a contraction:

|f(z)| = |sinz| <sinl < 1.

Thus, iteration converges to the unique fixed point in [0, 1].
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d(l’l,l‘()).

Inverse Function Theorem

Definitions:

e A function f: U C R™ — R™ is differentiable at € U
if there exists a linear map D f(z) : R™ — R™ such that:

L h) — £(x) — DF@))]

A0 7] =0

e The matrix of Df(z) in standard coordinates is the Ja-
cobian matrix:

o
8xj

Jp(z) = (

( >) .
1<i<m,1<j<n

e A function is of class C* if it is k times continuously dif-
ferentiable.

Theorem (Inverse Function Theorem): Let f : U C
R™ — R™ be a C'! function on an open set U, and let a € U.

Suppose D f(a) is invertible (i.e. det Df(a) # 0). Then:

1. There exists an open neighbourhood V' of a and an
open neighbourhood W of f(a) such that

f:V — W is a bijection, and f~': W — V is CL.

2. For all y € W, the derivative of the inverse is given
by:

D(f "(y) =Df(f y) "

Proof Outline:

Let T = Df(a), which is invertible. Define g(z) :
f(z) = T(x — a). Then g(a) = f(a) and Dg(a) = 0.

We rewrite f(x) near a as:

[1R(2)]l
[ = a

f(z) = f(a)+T(x—a)+R(x), with —0asz — a.

Then define the map:

This map has a fixed point at a, and one shows that ® is a
contraction near a. By the Contraction Mapping Theorem,
the fixed point is unique and depends continuously on the
image value — constructing f~! and proving differentiabil-
ity.

Example Application:

Let f(z,y) = (z +y +sin(zy), z — y).

Compute D f(0,0):
) ( ) det

So f is locally invertible near (0,0) and f~! is differentiable.

1+0 1+0
1 -1

1
1

1
-1

Df(o,0)< 2 4 0.
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Addendum: Implicit Function Theorem

Theorem (Implicit Function Theorem):

Let I : R"™ — R™ be a C! function, and suppose
F(a,b) = 0 for some (a,b) € R™ x R™.

If the Jacobian matrix

(3) e

is invertible, then there exist open neighbourhoods:

OF;
8yj

U CR" around a, V CR™ around b,
and a unique C! function g : U — V such that:
F(z,g(x)) =0 forall z e U.

Moreover, for all z € U, we have:

oF
dy

oFr

Do) =~ (L wgt@) -2 s gto

Interpretation: If F(z,y) = 0 implicitly defines y in
terms of z, then under the above conditions, this can be
solved locally as y = g(z) with g differentiable.

Example: Let F(z,y) = 2? +y*>—1. Then F(0,1) = 0,
and

oF

8y(o,1)=2y:27é0.

So there exists a differentiable function y = g(z) near z = 0
such that 22 + g(x)?> = 1 — i.e., one branch of the unit
circle.

Uniform Convergence and Continuity / Integrability /
Differentiability

Definition (Uniform Convergence): Let f, : X — R

be a sequence of functions. We say f, — f uniformly on X
if:

Ve > 0,3N € N such that Vn > N,Vz € X, |fu(z)—f(2)| <

Theorems:

Continuity Preserved: If each f, is continuous on a
metric space X, and f,, — f uniformly, then f is contin-
uous.

Integrability Preserved: If f,, € L'[a,b], and f, — f
uniformly, then:

f € L'a,b], and /abfn—>/abf.

Differentiability Not Preserved: Even if each f, is
differentiable, and f, — f uniformly, the limit may not
be differentiable. However, if f/ — ¢ uniformly and
fu(xo) = f(x0), then f,, = f uniformly and f' = g.
Boundedness Preserved: Uniform limits of bounded
functions are bounded.

E.
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Function Spaces

Let Cog(R?) denote the space of continuous functions f :
R? — R that vanish at infinity:

Ve > 0,3K C R? compact such that |f(z)| < ¢ for all = ¢ K.

Theorem: Cp(R?), with the sup norm | f|lec =
sup,cra | f()], is a complete metric space.

Proof Sketch: Let f, € Co(R?) be a Cauchy sequence
in || - |lec. Then f,, — f uniformly, and hence f € Cy(R?).
One checks that f € Cp(R?) using the ¢-K definition above,
since uniform convergence preserves vanishing at infinity.

Connectedness and Path Connectedness

Definition (Connectedness): A topological space X is
connected if there do not exist disjoint non-empty open sets
U,V C X such that:

X=UUV.

Definition (Path Connectedness): A topological
space X is path connected if for all x,y € X, there exists a
continuous map:

v:[0,1] = X  with v(0) =z, (1) =y.

Theorems and Proofs

Theorem: The continuous image of a connected space is
connected.

Proof: Let f: X — Y be continuous and X connected.
Suppose f(X) =U UV, where U,V C Y are disjoint non-
empty open. Then f~1(U), f~(V) are open, disjoint, cover
X, and non-empty = contradiction. So f(X) is connected.

Theorem: Path connected = connected.

Proof: Let X be path connected. Suppose X = U UV,
disjoint open non-empty. Pick z € U,y € V, and let
v :[0,1] = X be a path from z to y. Then v~ *(U),y~1(V)
are disjoint open in [0,1] and cover it, with 0 € v~1(U),
1 € vy Y(V) = contradicts connectedness of [0, 1].

Theorem: The closure of a connected set is connected.

Proof: Let A C X connected, and suppose A =U UV
with U,V disjoint non-empty open in A. Then UNA,VNA
are disjoint open in A, cover A, and non-empty = contra-
diction.

Theorem (Finite Intersection Criterion): If
{A;}icr is a collection of connected subspaces with non-
empty pairwise intersections and X = J,.; A;, then X is
connected.

icl

Proof: If each A; is connected and intersects a fixed Ay,
their union is connected by induction using the fact that the
union of two connected sets with non-empty intersection is
connected.
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Characterisation Theorem (Three-Way

lence)

Equiva-

Let X be a topological space. The following are equivalent:

1. X is connected.
2. Every continuous map f : X — {0,1} is constant.

3. Every continuous map f : X — Z is constant.

Proof:

(i) = (ii): Suppose f : X — {0,1} is continuous. Then
F71(0), f~1(1) are open in X, disjoint, and cover X. If both
are non-empty, this is a disconnection of X, contradicting
connectedness. So f is constant.

(ii) = (iii): Let f : X — Z be continuous. Then for
each n € Z, the set f~1(n) is open, since Z has the discrete
topology.

Since X = | |,,cz f~1(n), and the disjoint union of open
sets is open, only one of these can be non-empty by (ii).
Hence f is constant.

(iii) = (i): Suppose X is not connected. Then there exist
disjoint non-empty open sets U, V' C X such that X = UUV.

Define:
0 z€U
@)= {1 zeV

Then f : X — Z is continuous (as Z is discrete), but not
constant = contradiction.
Therefore, X must be connected.

Compactness in Topological Spaces

Definition (Compactness): A topological space X is
compact if every open cover has a finite subcover:

V{Uqs}aca open with X = UU“’ Jaq, ..., ap

n
such that X = U U,,.
i=1

Theorem: A closed subset of a compact space is com-
pact.

Sketch Proof: Let A C X be closed and X compact.
Given an open cover of A, extend it with X \ A to cover
X. Extract a finite subcover — those not covering X \ A
already cover A.

Definition (Hausdorff): A space X is Hausdorff if
for all x # y, there exist disjoint open sets U,V with
zelUyeV.

Theorem: If X is compact and Hausdorff, then every
continuous bijection f : X — Y is a homeomorphism.

Sketch Proof: Show that f is closed: Let A C X be
closed. Then A is compact, and so f(A) is compact in Y.
If Y is Hausdorff, compact sets are closed = f(A) is closed
= f is closed = inverse is continuous.

Definition (Homeomorphism): A map f: X - YV
is a homeomorphism if it is a bijective continuous map with
continuous inverse.
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Theorem: The quotient of a compact space is compact.

Sketch Proof: Let m: X — X/~ be the quotient map.
Given an open cover of X/~ pull back to get an open cover
of X, which has a finite subcover. Push this forward to get
a finite subcover of X/~.

Remark: Compactness is preserved under quotients.
HausdorfIness is not: the quotient of a Hausdorff space need
not be Hausdorff unless equivalence classes are closed.

Example (Non-Hausdorff Quotient): Identify all
points of [0,1] to a point. Quotient is compact but not
Hausdorft.

Differentiability in Multivariable Calculus

Definition (Differentiability at a Point): Let f: U C
R™ — R™ be a function, and let a € U. We say that f is
differentiable at a if there exists a linear map D f(a) : R —
R™ such that:

LS+ h) = f(a) — Di(a)(B)]

h—0 12l

=0.

The matrix of Df(a) in standard bases is the Jacobian
matrix:
ofi

Ji(a) = <ax]- (a))1<i<m71<]‘<n.

Note: Differentiability implies continuity.  Partial
derivatives existing does not imply differentiability unless
they are continuous (i.e. f € C1).

Completeness of Metric Spaces

Definition (Complete Metric Space): A metric space
(X, d) is complete if every Cauchy sequence converges to a
limit in X.

Definition (Cauchy Sequence): A sequence (z,) C
X is Cauchy if:

Ve > 0, IN € N such that Vm,n > N, d(x,,z.,) < €.

Examples:
e R™ with the Euclidean metric is complete.
e (C([a,b]) with the sup norm is complete.
e Any closed subset of a complete metric space is complete.

Definitions

Continuity (Topological): A function f : X — Y be-
tween topological spaces is continuous if:

YV C Y open, f~1(V) C X is open.

Differentiability (Euclidean): Let f : U C R” —
R™. f is differentiable at a € U if there exists a linear map
Df(a) such that:

L@t )~ f(@) - DI@)B)]

=0.
h—0 12l

Quotient Topology: Let X be a topological space, and
~ an equivalence relation on X. The quotient topology on
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X/~ is the finest topology such that the projection map
m: X — X/~ is continuous. Explicitly:

UC X/~isopen <= 7 '(U) is open in X.

Product Topology: Let {X;};c; be a family of topo-
logical spaces. The product topology on [ [, X; is the coars-
est topology such that all projections m; : [[ X; — X are
continuous. A subbasis is given by products [[U;, where
U; C X, is open and U; = X; for all but finitely many 1.

Gluing Lemma

Theorem (Gluing Lemma): Let X = A U B with
A,B C X closed (or open). Let f : X — Y be a func-
tion such that:
e fla:A—Y is continuous
e flp: B —Y is continuous
o flanp agrees on the overlap
Then f: X — Y is continuous.
Proof: Let U C Y be open. Then:

FHU) = (fla) M U) U (fls) M)
Each preimage is open in A, B respectively, hence:

(fla)H(U) =AnVi, (flp)"'(U) =BV,

for some open V1, Vo C X. So:
f7HU) = (ANVI) U (BN V)

is open in X. Therefore, f is continuous.

Continuity: Sequential and Topological Criteria

Sequential Characterisation of Continuity: Let f :
X — Y be a function between topological spaces.
Theorem: If X is first countable, then:

f is continuous at x € X <= V(x,) — z, f(z,) — f(x).

Proof Sketch: ”=": Follows from openness of inverse
images. ”<=": Assume inverse image of open V C Y is not
open in X. Then there exists a sequence z,, — x € f~1(V)
with f(z,) ¢ V, contradicting f(z,) — f(z) € V.

Closure Characterisation of Continuity:

Theorem: f: X — Y is continuous iff for every A C X,

f(A) C f(A).

Proof Sketch: Let © € A. Then every open neighbour-
hood of z intersects A, so every neighbourhood of f(x) in-

tersects f(A), implying f(z) € f(A).

Continuity in Function Spaces

Let (Y,d) be a metric space and C(X,Y") the set of contin-
uous functions from X — Y, endowed with the sup norm:

If = glloe = sup d(f(z), g(x)).
zeX
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Theorem: If (Y, d) is complete and X is compact, then
(C(X,Y), || - llso) is complete.

Proof Sketch: Let (f,) C C(X,Y) be a Cauchy sequence.
Then for each z, f,(z) is Cauchy in Y, so converges to
f(z) € Y. Define f : X — Y, show uniform convergence,
and use uniform limit of continuous functions is continuous
= feC(X,Y).

Continuity in Product Spaces:

Theorem: A map f: Z — [],, X, is continuous iff each
composition 7, o f 1 Z — X, is continuous.

Proof Sketch: Follows by subbasis definition of product
topology: basic open sets are preimages under projections
= continuity of f is equivalent to continuity of each coor-
dinate function.

Topological vs Non-Topological Properties

Topological Property: A property of a space X that is
preserved under homeomorphism. If X 2V (i.e., there ex-
ists a homeomorphism), then X has the property <— Y
does.

Examples of Topological Properties:
Connectedness
Compactness
Hausdorffness
Second countability
Local connectedness / local compactness
Continuity of maps

Non-Topological Properties: Depend on more than

the topology — e.g., algebraic, geometric, metric.

Examples of Non-Topological Properties:
Metrizability (unless specified otherwise)
Boundedness (not preserved under homeomorphism)
Total disconnectedness (in some settings)
Smoothness / differentiability
Distance and angles

Remark: Topological properties are defined in terms
of open sets, closures, and continuous functions. Non-
topological properties usually require extra structure (met-
ric, vector space, etc.).

Weierstrass M-Test and Power Series

Weierstrass M-Test: Let f,, : X — R be functions with:
|fr(x)] <M, VrelX, and ZM" < 0.

Then Y f,(x) converges uniformly and absolutely on X,
and the sum is continuous if all f,, are.

Local Uniform Convergence of Power Series: Let
f(z) =377y ana™ with radius of convergence R > 0. Then:

Z anz™ converges uniformly on every compact subset of (—R, R).

= Power series define continuous functions; term-by-term
differentiation/integration valid on compact subsets within
(*Ra R)



